BOSTON REGION METROPOLITAN PLANNING ORGANIZATION

Richard A. Davey, MassDOT Secretary and CEO and MPO Chairman Karl H. Quackenbush, Executive Director, MPO Staff

MEMORANDUM

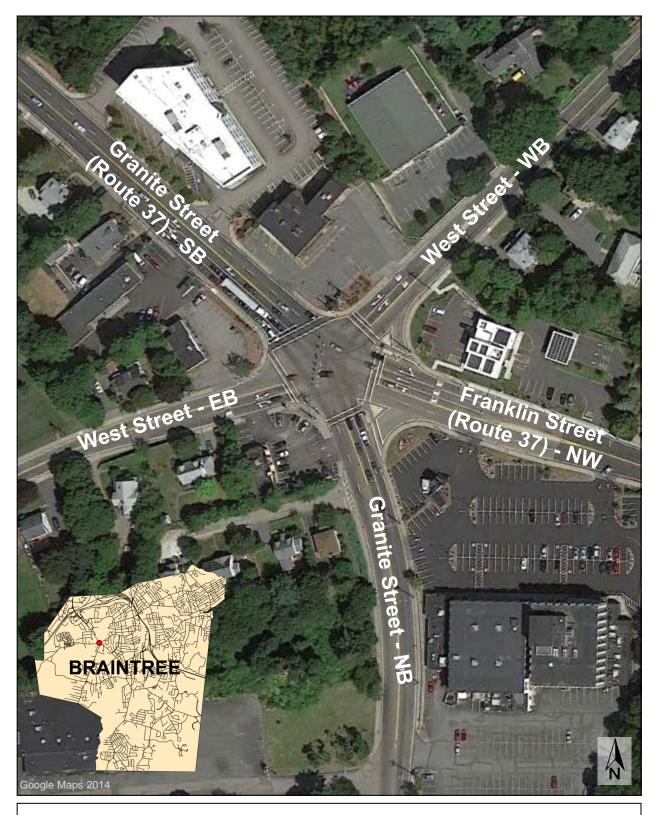
- DATE June 5, 2014
- TO Boston Region Metropolitan Planning Organization
- FROM Mark S. Abbott MPO Staff
- RE Safety and Operations Analyses at Selected Intersections, FFY 2013: Franklin Street (Route 37) at West Street and Granite Street in Braintree

1 INTRODUCTION

This memorandum summarizes safety and operations analyses and proposes improvement strategies for the intersection of Route 37 (Franklin and Granite streets) at West Street in Braintree. The intersection and its location are shown in Figure 1.

The location was approved for study by the Boston Region MPO following a selection process¹ for four locations from a short list of 21 intersections based on five criteria, including a high EDPO (Equivalent Property Damage Only) crash rating, the number of pedestrian and bicycle crashes, transit significance, regional significance, and implementation potential.

The four locations approved for study are:


- North/South Franklin Street (Route 37) at Union Street/Plymouth Street (Route 139) in Holbrook
- Western Avenue (Route 107) at Washington Street (Route 129) in Lynn
- Lexington Street at Beaver Street in Waltham
- Route 37 (Franklin and Granite streets) at West Street in Braintree

The Route 37 at West Street location was the only intersection in Braintree that met all five criteria in the intersection selection criteria process. One other intersection in Braintree was considered; however, it met only three of the selection criteria.

The memo contains the following sections:

- Existing Conditions
- Issues and Concerns

¹ Mark Abbott and Chen-Yuan Wang, memorandum to Boston Region MPO, "Safety and Operations Analyses at Selected Intersections—FFY 2013, Task 1: Intersection Selection Procedure," November 1, 2012

BOSTON REGION MPO FIGURE 1 Franklin Street (Route 37) at West Street, Braintree Safety and Operations Analyses at Selected Intersections

- Crash Data Analysis
- Intersection Capacity Analysis
- Improvement Alternatives
- Recommendations and Discussion

It also includes technical appendices that contain methods and data applied in the study and detailed reports of the intersection capacity analyses.

2 EXISTING CONDITIONS

Route 37, running primarily in the north–south direction through the entire town of Braintree, is a principal arterial that is owned by MassDOT and is located within MassDOT's District 6 Highway Division region. It is named Granite Street north of the study intersection and has two lanes in each direction. South of the intersection it is named Franklin Street and has one lane in each direction. At the study intersection, Route 37 runs in a northwest–southeast direction.

Route 37 is intersected by West Street from the east and west; and Granite Street from the south. West Street, which has one lane in each direction, is a local town-owned roadway that runs primarily in an east–west direction through the study intersection. West of the intersection, West Street is classified as an urban principal arterial and east of the intersection the classification changes to urban minor arterial. Granite Street south of the intersection is also a townowned roadway, which is classified as an urban principal arterial. It has one lane in each direction.

The intersection, Route 37 at West Street, is also known as the Five Corners. All the roadways approach the intersection at a skewed angle, as shown in Figure 2. The primary traffic flow through the intersection is along Route 37 and from Granite Street from the south.

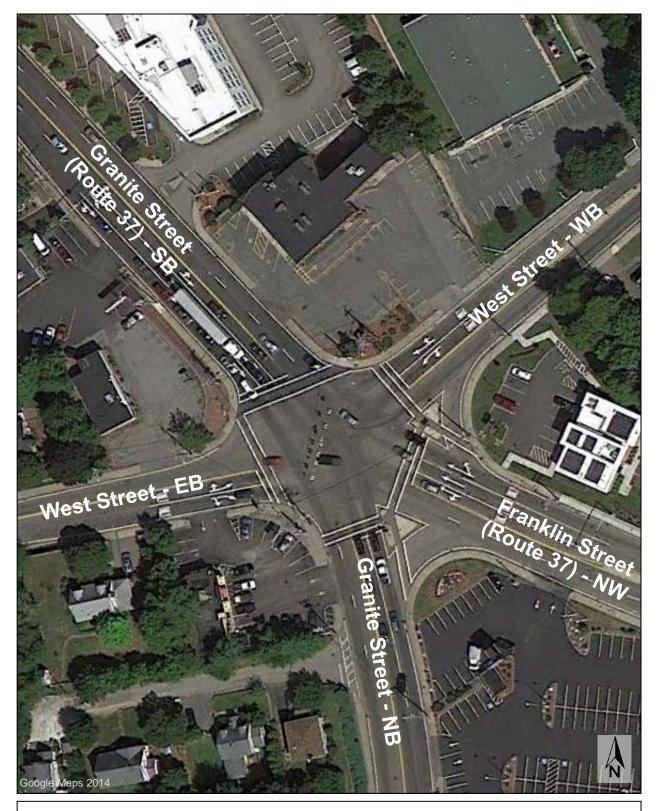
The intersection is signalized, with multilane approaches on each approach leg. The Route 37 northwest approach widens to three lanes approximately 160 feet prior to the intersection. The left approach lane is marked for left turns to Granite and "through" movements to West Street westbound. The middle lane is marked for through movements to Route 37 northwest. The right lane is marked for through movements to Route 37 and right turns to West Street.

The Route 37 southbound approach also widens to three lanes before the intersection for approximately 215 feet. The left lane is marked for left turns to West Street and through movments to Route 37. The middle lane is marked as a shared through lane to both Route 37 (Franklin Street) southbound and Granite Street southbound. The right lane is marked as a shared lane for through movements to Granite Street and right turns to West Street.

The Granite Street northbound approach to the intersection widens to two lanes approximately 140 feet from the intersection. Both lanes are general purpose lanes and are unmarked. There is an unsignalized right-turn lane, seperated by a delta island; the roadway does not widen for this right-turn movement.

The West Street eastbound approach to the intersection widens to two lanes approximately 100 feet from the intersection. The left lane is marked as a leftturn lane to Route 37 northbound and through lane to West Street. The right lane is marked as a "through" lane to Franklin Street and a right-turn lane to Granite Street southbound.

The westbound West Street approach also widens to two lanes, approximatel 80 feet from the intersection. This approach is marked similarly to the eastbound approach, with one lane providing access to Granite Street southbound and Franklin Street southbound; and the right lane providing access to West Street westbound and right turns to Route 37 northbound.


Pedestrian signals and crosswalks are provided on all intersection approaches. Two traffic islands for the exclusive right-turn lanes allow for shorter crosswalk lengths for pedestrians. Sidewalks (approximately six feet wide) are present along all five corners of the intersection and also along both sides of all of the approach streets. Wheelchair ramps are provided; however, several appear to not meet ADA requirements (see photo at the right). No provisions for bicycles have been provided.

The signal heads, mounted on an overhead span wire (see photo

Wheelchair ramp with no detectable warning pads

below), include standard three-face signal heads, a five-face signal head, and a four-face signal head. No back plates are provided on any of the signal heads. The support poles for the span wire are located in the northeast and the southwest corners of the intersection. There are additional three-face signal heads mounted on the span wire poles and one lone post-mounted signal head located on the small delta island between Franklin Street and West Street in the southeast corner. The pedestrian heads are all pole-mounted or are also mounted on the span wire support poles. Pedestrian activation is provided.

BOSTON REGION MPO FIGURE 2 Franklin Street (Route 37) at West Street, Braintree Safety and Operations Analyses at Selected Intersections

Existing span wire with signal heads

The land use at the five corners of the intersection is zoned either General Business or Highway Business. The southern corner, between Granite and Franklin streets, contains the 400 Franklin Street office building, which includes several businesses and shops. The parking lots for this building are between Franklin and Granite streets, and on the south side of the building. The southeast corner, between Franklin and West streets, has a TD Bank. The northeast corner has a Citizens Bank and the northwest corner has the Vitamin Shoppe and Firestone Complete Auto Care garage. A Dunkin Donuts is located on the southwest corner. Away from the intersection, along Franklin Street, Granite Street to the south, and West Street, the zoning changes to residential. Only along the eastern side of Route 37, north of the intersection, does the zoning remain business.

There are two Massachusetts Bay Transportation Authority (MBTA) bus routes that travel through the intersection— MBTA bus Routes 236 and 238. The Route 236 travels between the South Shore Plaza and Quincy Center. The Route 238 travels between the Holbrook/Randolph Commuter rail station and Quincy Center. Both bus routes travel along Route 37 north of the intersection and then split, with the 238 traveling along Granite Street south of the intersection and the 236 traveling along Franklin Street.

The bus stops for both routes, north of the intersection, are located approximately 250 feet from the intersection, on either side of Route 37. The Route 236 bus stops on both sides of Granite Street are located approximately 150 feet south of the intersection and the stops for Route 238 are located approximately 250 feet south of the intersection, along Franklin Street. The bus stops require the MBTA buses to stop in the curb-side travel lane to let passengers on and off. During congested periods these stops could present a situation where side-swipe and rear-end accidents could occur.

3 ISSUES AND CONCERNS

Three major issues, which are related, were identified. First, the intersection has a high number of crashes; second, the intersection is highly congested during the AM and PM peak hours; and third, the intersection geometry is not ideal for a high-volume signalized intersection. In addition when there are traffic incidents or heavy delays on Route 93 and Route 3, Route 37 is used as a cut-through between those two highway facilities.

Based on the field observations and crash and traffic data analyses, the issues and concerns for the intersection can be summarized as:

- High number of crashes and high crash rate
- Failing traffic operations
- Traffic congestion
- No bicycle accommodations

4 CRASH DATA ANALYSIS

Table 1 summarizes the crash statistics at the intersection based on the MassDOT Registry of Motor Vehicles (RMV) 2006–2010 crash data. On average, approximately 17 crashes occurred at the intersection each year. About 35 percent of the total crashes resulted in personal injuries. Crash types consist of 52 percent angle collisions, 19 percent rear-end collisions, 8 percent sideswipe collisions, 7 percent head-on collisions, 7 percent unknown types of collisions, and 5 percent single-vehicle collisions.

In the five-year period, there were no reported pedestrian crashes or bicycle crashes.

About 48 percent of the total crashes occurred during peak periods, which indicates that many of the crashes are potentially related to stop-and-go traffic conditions at the intersection during congested periods.

Crash rate² is another effective tool for examining the relative safety of a location. Based on the crash data and the turning-movement counts collected recently by MPO staff, the crash rate for this intersection was calculated as 1.13 (see Appendix A). This is much higher than the average crash rate for

² Crash rates are estimated based on crash frequency (crashes per year) and vehicle exposure (traffic volumes or miles traveled). Per MassDOT guidance, crash rates are expressed as "crashes per million entering vehicles" for intersection locations and as "crashes per million miles traveled" for roadway segments.

signalized intersections in MassDOT Highway Division District 6, which is estimated to be $0.76.^3$

				Orabi	Uuiii	nary	
Crash Category	2006	2007	2008	2009	2010	Total	Average
Crash severity							
Property damage only	19	8	9	4	9	49	9.8
Personal injury	4	6	6	6	7	29	5.8
Fatality	0	0	0	0	0	0	0.0
Collision type							
Not reported	4	2	0	0	0	6	1.2
Angle	9	9	7	7	12	44	8.8
Rear-end	4	4	3	2	3	16	3.2
Side-swipe	2	2	3	0	0	7	1.4
Head-on	2	0	1	1	2	6	1.2
Single-vehicle	3	0	1	0	0	4	0.8
Roadway conditions							
Not reported	1	0	0	0	0	1	0.2
Wet or icy pavement	8	5	5	3	5	26	5.2
Weather conditions							
Dark/lighted	4	6	3	2	3	18	3.6
Clear	12	13	11	6	12	54	10.8
Cloudy	4	1	0	1	0	6	1.2
Rain	6	2	4	2	5	19	3.8
Snow	1	1	1	1	0	4	0.8
Crashes during weekday peak periods ¹	15	5	5	5	10	40	8.0
Crashes involving pedestrian(s)	0	0	0	0	0	0	0.0
Crashes involving bicyclist(s)	0	0	0	0	0	0	0.0
Total crashes	24	17	16	10	17	84	16.8

TABLE 1
Route 37 at West Street and Granite Street—Crash Summary

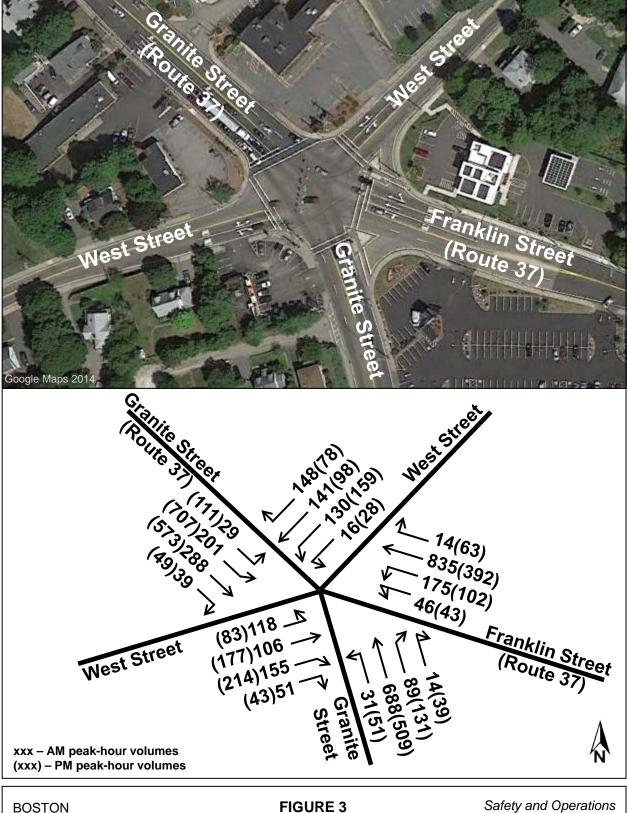
¹ Peak periods are defined as 7:00–10:00 AM and 3:30–6:30 PM.

³ The average crash rates estimated by the MassDOT Highway Division (as of January 23, 2013) are based on a database that contains intersection crash rates submitted to MassDOT as part of the review process for an Environmental Impact Report or Functional Design Report.

5 INTERSECTION CAPACITY ANALYSIS

Staff collected turning-movement counts at the intersection on Wednesday, December 5, 2012. The data were recorded in 15-minute intervals during peak traffic periods in the morning, from 7:00 to 9:00, and in the evening, from 4:00 to 6:00.

The peak-hour traffic volumes in each of the two peak periods was then identified, and data on the associated turning movements and pedestrian crossings were used for the intersection's capacity analysis.


Figure 3 shows the observed vehicular turning-movement counts in the AM and PM peak hours. The intersection carried about 3,310 vehicles in the AM peak, from 7:30 to 8:30, and about 3,650 vehicles in the PM peak hour, from 5:00 to 6:00 (see Appendix B for detailed 15-minute breakdowns for passenger vehicles, various heavy vehicles, pedestrians, and bicycles in the peak periods and the peak hours).

There were 14 and 8 pedestrians crossing the intersection during the AM and PM peak hours, respectively. The highest number of pedestrian crossings occurred on the southern section of the intersection, crossing Granite and Franklin streets. There were no bicyclist's observed during the peak periods during the traffic counts.

Heavy vehicles accounted for about 3.8 percent of the total entry traffic in the AM peak hour and about 1.0 percent in the PM peak hour. The through movements on the northbound and southbound Granite Street approaches carry the highest percentage of heavy vehicle traffic at the intersection. However, based on observations made by the Town of Braintree planners, there is significant truck traffic during the off-peak hours, predominately a high number of FedEx vehicles using Granite Street south of the intersection.

Based on the counts, signal permit data, and manual traffic signal timing, the intersection was modeled as a fully actuated isolated intersection. Table 2 summarizes the Synchro⁴ analysis results for existing conditions in the AM and PM peak hours.

⁴ Synchro Version 8 is developed and distributed by Trafficware Ltd. The software can perform capacity analysis and traffic simulation (when combined with SimTraffic) for an individual intersection or a series of intersections.

REGION MPO FIGURE 3 Route 37 at West Street, Braintree – Traffic Volumes Safety and Operations Analyses at Selected Intersections

Street Name	Approach/Movement	LOS ¹	Delay per Vehicle
Granite Street	NB – All	F (F)	94.8 (142.5)
Route 37 (Franklin)	NW – Left/through	F (F)	609.7 (335.5)
Route 37 (Franklin)	NW – Through/right	E (D)	66.8 (37.1)
Route 37 (Granite)	SB – Left/through	E (F)	66.0 (169.5)
Route 37 (Granite)	SB – Through/right	E (F)	55.3 (147.5)
West Street	EB – Left/through	F (F)	499.3 (400.4)
West Street	EB – Through/right	F (F)	161.3 (167.3)
West Street	WB – Left/through	F (F)	289.6 (465.6)
West Street	WB – Through/right	E (D)	55.7 (42.2)
Overall		F (F)	162.8 (182.1)

TABLE 2 Intersection Capacity Analysis, Existing Conditions

¹ LOS = level of service. The LOS for the AM peak hour is the first letter. The LOS for the PM peak hour is in parentheses.

The analysis indicates that the intersection operates at a level of service (LOS) F in the AM peak hour with an average delay of over two minutes per vehicle. In the PM peak hour, the intersection is estimated to operate at LOS F with an average delay of nearly three minutes per vehicle. Under the existing conditions at the intersection, the Route 37 approaches operate primarily at LOS E during the AM peak period. However conditions get worse in the PM peak hour, with the additional afternoon traffic. Detailed analysis parameters and results for the AM and PM peak hours are in Appendix C.

6 IMPROVEMENT ALTERNATIVES

The intersection's signal equipment has been updated fairly recently, and the very limited ability to widen any approaches or departures limits the options for improving the current operations at the intersection. MPO staff tested a number of alternatives with signal timing improvements, lane assignments, and additional approach lanes, specifically adding a lane on Route 37. However the impacts to adjacent businesses, including their parking, would be significant, and the resulting operational improvements would not result in significant benefits. Also it should be noted that any changes to existing lane assignments would necessitate widening of the departure lanes. Staff also examined the possibility of replacing the current signalized intersection with a modern roundabout.

To simplify the analysis, one alternative was examined with signal timing changes and one alternative was evaluated for the potential of constructing a modern roundabout. The two alternatives are:

- Alternative 1: Retime the traffic signal and signal phasing under the existing intersection geometry.
- Alternative 2: Replace the existing signalized intersection with a modern two-lane roundabout (two-lanes would be required, based on the existing traffic volumes). A two-lane roundabout (shown in Figure 4) was sketched out using a 150-foot inscribed circle diameter. A 150-foot diameter is the minimum diameter typically found with multilane roundabouts based on NCHRP Report 672 Roundabouts: An Informational Guide.⁵ The two-lane roundabout is necessary because of the existing traffic volumes. This sketch shows the minimum impacts to neighboring properties that would be result from a two-lane roundabout.

Tables 3 and 4 summarize the capacity analyses for Alternative 1 (signal timing improvements) in both the AM and PM peak hours, and compares A with the existing conditions. Figure 5 shows the existing and proposed signal timings and phasing for the intersection and Table 5 provides a description of the movements and phases.

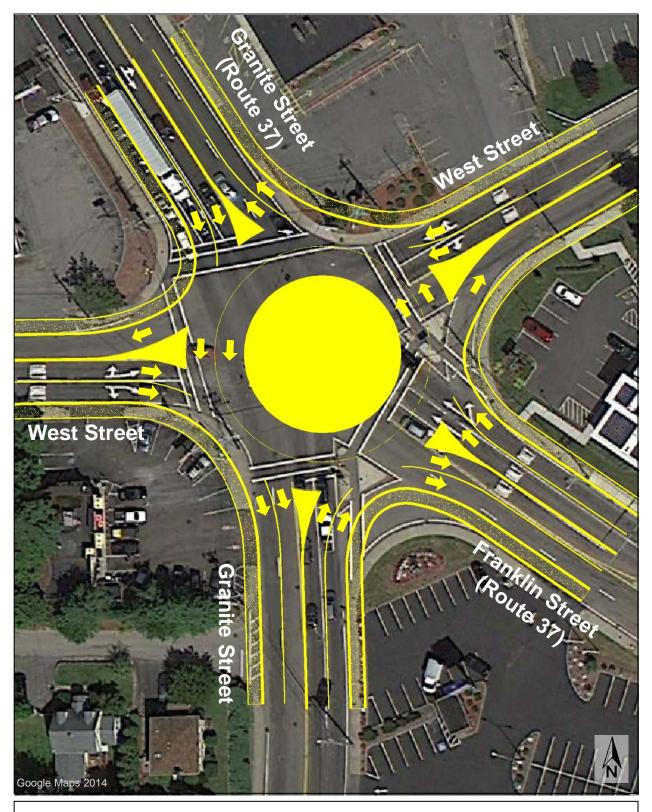

		Existing Conditions	Alternative 1
Street Name	Approach	LOS ¹	LOS
Granite Street	NB – All	F (F)	F (F)
Route 37 (Franklin)	NW – Left/through	F (F)	F (F)
Route 37 (Franklin)	NW – Through/right	E (D)	E (C)
Route 37 (Granite)	SB – Left/through	E (F)	F (D
Route 37 (Granite)	SB – Through/right	E (F)	E (D)
West Street	EB – Left/through	F (F)	F (F)
West Street	EB – Through/right	F (F)	F (F)
West Street	WB – Left/through	F (F)	F (F)
West Street	WB – Through/right	E (D)	C (C)
Overall		F (F)	F (F)

TABLE 3

Intersection Capacity Analysis of Level-of-Service for Existing Conditions and Alternatives

¹ LOS = level of service. The LOS for the AM peak hour is the first letter. The LOS for the PM peak hour is in parentheses.

⁵ National Cooperative Highway Research Program, NCHRP Report 672: Roundabouts: An Informational Guide, Second Edition, Transportation Research Board, 2010.

BOSTON REGION MPO

FIGURE 4 Sketch of 150 Foot Diameter Roundabout

Safety and Operations Analyses at Selected Intersections

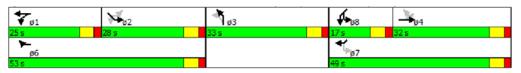

L^	isting Conditions an		
		Existing Conditions	Alternative 1
Street Name	Approach	Delay ¹	Delay
Granite Street	NB – All	94.8 (142.5)	128.3 (183.2)
Route 37 (Franklin)	NW – Left/through	609.7 (335.5)	189.9 (976.7)
Route 37 (Franklin)	NW – Through/right	66.8 (37.1)	57.2 (27.1)
Route 37 (Granite)	SB – Left/through	66.0 (169.5)	117.6 (49.0)
Route 37 (Granite)	SB – Through/right	55.3 (147.5)	62.3 (36.1)
West Street	EB – Left/through	499.3 (400.4)	259.7 (695.9)
West Street	EB – Through/right	161.3 (167.3)	108.8 (318.9)
West Street	WB – Left/through	289.6 (465.6)	257.5 (559.9)
West Street	WB – Through/right	55.7 (42.2)	27.7 (27.6)
Overall		162.8 (182.1)	115.3 (217.6)

TABLE 4
Intersection Capacity Analysis of Delay for
Existing Conditions and Alternatives

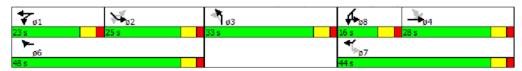
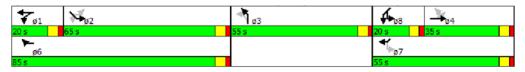

¹ The delay for the AM peak hour is the first number. The delay for the PM peak hour is in parentheses.

FIGURE 5 Intersection Signal Timings and Phasing for the Existing Conditions and Alternatives


AM Peak Hour - Existing

AM Peak Hour – Alternative 1

PM Peak Hour - Existing

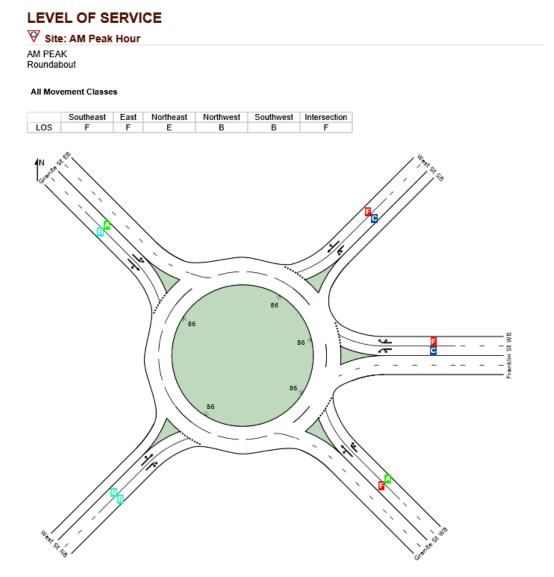
PM Peak Hour – Alternative 1

Existing Conditions and Alternatives												
		Existing Conditions	Alternative 1									
Street Name	Approach	Phases	Phases									
Granite Street	NB – All	3	3									
Route 37 (Franklin)	NW – Left	1	1									
Route 37 (Franklin)	NW – Through/right	6	6									
Route 37 (Granite)	SB – All	2	2									
West Street	EB – All	4	4									
West Street	WB – Left/through	8	8									
West Street	WB – Through/right	7	7									

TABLE 5 Intersection Signal Phasing for Existing Conditions and Alternatives

Alternative 1, retiming the signal with the existing geometry, resulted in the same overall level of service, LOS F, during both the AM and PM peak hours. However the overall delay improved by 37 seconds in the AM peak hour. In the PM peak, while some individual movements improved, the overall delay increased slightly.

Alternative 2, replacing the existing signalized intersection with a modern roundabout, was evaluated with the Massachusetts Roundabout Installation Screening Form. The evaluation examines safety, operations, traffic calming, aesthetics and community enhancements, and access management factors. The evaluation determined that a roundabout is not recommended for this location because its high traffic volumes would require a multilane roundabout, and there is inadequate space at that location for a roundabout. The evaluation form is included in Appendix D.


The alternative was also evaluated with SIDRA software⁶ to determine the operations of a roundabout at that location with the existing traffic volumes. The figures below show the results of the analysis. As shown in the figures, the two-lane roundabout would operate overall at LOS F during both peak hours. Multiple legs of the roundabout would also have failing operations. Detailed analysis parameters and results for the AM and PM peak hour are included in Appendix E.

Between the results of the evaluation and the operations analysis, a two-lane roundabout is not recommended for this location. The sketch of the two-lane roundabout shows a minimum diameter of 150 feet. At this location, with the approach angles of the existing roadways, a larger-diameter roundabout would

⁶ SIDRA Intersection 6.0.20.4660, © 2000-2014, Akcelik and Associates Pty. Ltd.

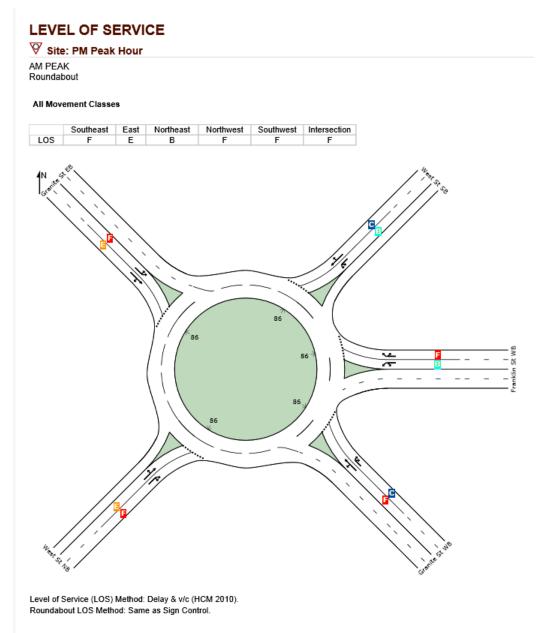
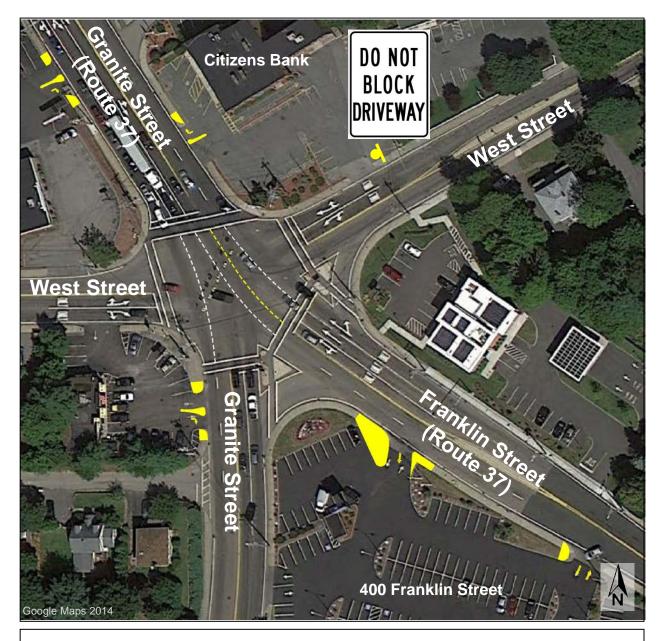

be necessary. This would cause a greater impact to neighboring property owners.

FIGURE 6 SIDRA Analysis Results for a Two-Lane Roundabout: AM Peak Hour

Level of Service (LOS) Method: Delay & v/c (HCM 2010). Roundabout LOS Method: Same as Sign Control.

FIGURE 7 SIDRA Analysis Results for a Two-Lane Roundabout: PM Peak Hour



7 RECOMMENDATIONS AND DISCUSSIONS

The study intersection has a high number of crashes and is very congested during the peak hours. The above analyses indicate that many crashes are possibly related to the congested conditions at the intersection and the complicated turning movements caused by a five-legged skewed intersection. Nevertheless, the congestion at the intersection is not easy to totally mitigate at any given approach without impacting one of the other approaches, and because of the very constrained right-of-way. Because of these limitations, staff recommends a comprehensive approach of minor improvements to the intersection to improve safety and operations.

The intersection improvements should include the following:

- Examine possible signal re-timings that would improve traffic flow for Route 37 and Granite Street at the minor expense of West Street. Conduct this examination with actual field trials of the new signal timings with observations made by Highway Division District 6 traffic engineers to determine the effectiveness of the changes.
- Provide pavement-marking extensions through the intersection for the heavy traffic movements of Route 37, as shown in Figure 8. This would provide a delineated path for vehicles to follow through the intersection, which should improve safety. It should also help to reduce possible side-swipe and angle crashes.
- Install "Do Not Block Driveway" sign at the Citizens Bank entrance/exit driveway on West Street, as shown in Figure 8.
- Examine possible driveway modifications. Provide right-turns-in/right turns-out-only, as shown in Figure 8.
- Modify driveways to 400 Franklin Street, as shown in Figure 8.
- Improve signal head visibility by installing black back plates on all signal housings.
- Maintain the use of concurrent pedestrian phases in the signal operations plan.
- Replace the current pedestrian signal heads to the newer countdown signal heads.
- Install the MUTCD-recommended "Turning Vehicles Yield to Pedestrians" sign (R10-15, see Figure 9) about 50 feet before the intersection on all approaches.

BOSTON REGION MPO FIGURE 8 Proposed Curb Cut Modifications and Signing Safety and Operations Analyses at Selected Intersections

FIGURE 9 MUTCD Sign R10-15: Turning Vehicles Yield to Pedestrians

- Include bicycle accommodations, which would be limited because of the street widths, but which could include bicycle detection with appropriate signing.
- Longer-term bicycle improvements for the intersection could include widening the approaches to accommodate bicycle lanes through the intersection. However an overall examination of the Route 37 corridor and Granite Street should be completed to ensure that bicycle connections can be accommodated.
- A longer-term improvement for pedestrians would be to reconstruct the wheelchair ramps on each corner to meet current ADA (Americans with Disabilities Act) standards, with detectable warning pads on the ramps.

All of the improvements recommended above, except for the wheelchair ramp reconstruction, can be considered low-cost, short-term improvements. These improvements should improve operations and safety at the intersection not only for motor vehicles, but also for pedestrians and bicyclists.

MSA/msa

APPENDIX A

Crash Rate Worksheet

INTERSECTION CRASH RATE WORKSHEET

CITY/TOWN : Lynn				COUNT DA	TE:	10/25/2012
DISTRICT : 4	UNSIGN	IALIZED :		SIGNA	LIZED :	X
		~ IN [.]	TERSECTION	I DATA ~		
MAJOR STREET :	Route 37					
MINOR STREET(S) :	West Street	and Granite S	Street			
	A					
INTERSECTION	N North			Route 37		
DIAGRAM (Label Approaches)		West Street				
				\backslash		
		Granite Stree	et 🖊	\	Route 37 (Fr	anklin Street
			PEAK HOUF	R VOLUMES		Total Deals
APPROACH :	1	2	3	4	5	Total Peak Hourly
DIRECTION :	NW	NE	SB	EB	WB	Approach Volume
PEAK HOURLY VOLUMES (AM/ PM)	: 600	730	1,440	517	363	3,650
"K "FACTOR :	0.090	INTERS	ECTION ADT APPROACH	· · ·	AL DAILY	40,556
TOTAL # OF CRASHE	ES : 84	# OF YEARS :	5	CRASHES	GE # OF PER YEAR (.):	16.80
CRASH RATE CAL	CULATION :	1.13	RATE =	<u>(A * 1,0</u> (V	000,000) * 365)	

 Comments :
 District 6 Signalized Ave = 0.76 crashes per million entering vehilces

 Project Title & Date:
 Safety and Operations Analyses at Selected Intersections - Braintree

APPENDIX B

Turning-Movement Count Data

AM Peak Hour

Start Date: 12/5/2012 Start Time: 7:00:00 AM Site Code: 12051221

													All Vehicles	S												
		Fran	klin Stree	t			(Granite S	treet				Granite St	reet				West Str	eet			W	est Stree	et		
		Nor	thbound				N	ortheastb	ound				Southbou	Ind				Eastbou	Ind			W	estboun	d		
	Hard Left	Left	Thru	Right		Left	Thru	Right	Hard Right		Left	Thru	Right	Hard Right		Left	Thru	Right	Hard Right		Left	Left	Thru	Right		1
	to	to	to	to		to	to	to	to		to	to	to	to		to	to	to	to		to	to	to	to		Vehicle
Start Time	Granite	West	Granite	West	Peds	West	Granite	West	Franklin	Peds	West	Franklin	Granite	West	Peds	Granite	West	Franklin	Granite	Peds	Franklin	Granite	West	Granite	Peds	Total
07:30 AM	8	32	175	5	0	5	147	20	4	0	6	57	85	9	0	42	22	20	15	0	0	39	44	39	0	774
07:45 AM	9	41	234	5	0	5	204	20	2	0	10	59	76	13	0	22	28	68	16	1	10	34	31	43	0	930
08:00 AM	14	64	242	3	11	10	179	22	2	0	2	26	61	11	0	23	34	39	11	0	3	20	36	31	1	833
08:15 AM	15	38	184	1	0	11	158	27	6	0	11	59	66	6	0	31	22	28	9	1	3	37	30	35	0	777
Total:	46	175	835	14	11	31	688	89	14	0	29	201	288	39	0	118	106	155	51	2	16	130	141	148	1	3314
PHF:	0.77	0.68	0.86	0.70		0.78	0.84	0.82	0.58		0.66	0.85	0.85	0.75		0.70	0.78	0.57	0.80		0.40	0.83	0.80	0.86		
Truck%:	0.00%	1.14%	1.80%	14.29%		22.58%	5.52%	6.74%	7.14%		0.00%	1.99%	5.56%	20.51%		6.78%	9.43%	4.52%	0.00%		0.00%	0.00%	2.13%	0.00%		

AM Peak Period All Vehicles

		Franl	klin Stree	t			G	anite St	treet				Granite St	reet				West Str	reet			W	est Stree	et		
		Nor	thbound				No	ortheastb	ound				Southbou	Ind				Eastbou	Ind			W	estboun	d		
	Hard Left	Left	Thru	Right		Left	Thru	Right	Hard Right		Left	Thru	Right	Hard Right		Left		Right	Hard Right		Left	Left	Thru	Right		1
	to	to	to	to		to	to	to	to		to	to	to	to		to	Thru	to	to		to	to	to	to		Vehicle
Start Time	Granite	West	Granite	West	Peds	West	Granite	West	Franklin	Peds	West	Franklin	Granite	West	Peds	Granite	to West	Franklin	Granite	Peds	Franklin	Granite	West	Granite	Peds	Total
07:00 AM	19	33	59	5	1	6	42	20	2	0	2	56	55	8	0	7	12	109	20	0	2	49	19	22	0	547
07:15 AM	18	25	125	2	0	5	165	24	3	0	6	34	90	16	0	6	11	24	19	0	1	48	52	33	0	707
07:30 AM	8	32	175	5	0	5	147	20	4	0	6	57	85	9	0	42	22	20	15	0	0	39	44	39	0	774
07:45 AM	9	41	234	5	0	5	204	20	2	0	10	59	76	13	0	22	28	68	16	1	10	34	31	43	0	930
08:00 AM	14	64	242	3	11	10	179	22	2	0	2	26	61	11	0	23	34	39	11	0	3	20	36	31	1	833
08:15 AM	15	38	184	1	0	11	158	27	6	0	11	59	66	6	0	31	22	28	9	1	3	37	30	35	0	777
08:30 AM	6	22	156	7	0	7	182	14	2	0	1	20	44	3	0	26	31	20	18	0	2	14	12	13	0	600
08:45 AM	11	35	162	1	1	9	153	38	6	1	11	62	83	3	1	32	21	36	14	0	3	25	26	33	1	764
Total:	100	290	1337	29	13	58	1230	185	27	1	49	373	560	69	1	189	181	344	122	2	24	266	250	249	2	5932

PM Peak Hour

Start Date: 12/5/2012 Start Time: 5:00 PM Site Code: 12051212

	All Vehicles																									
		Fran	klin Stree	t			(Granite S	treet				Granite St	reet				West Str	reet			W	est Stre	et		
		Nor	thbound				N	ortheastb	ound				Southbou	Ind				Eastbou	Ind			W	/estboun	d		
I F	Hard Left	Left	Thru	Right		Left	Thru	Right	Hard Right		Left	Thru	Right	Hard Right		Left	Thru	Right	Hard Right		Left	Left	Thru	Right		
	to	to	to	to		to	to	to	to		to	to	to	to		to	to	to	to		to	to	to	to	1	Vehicle
Start Time	Granite	West	Granite	West	Peds	West	Granite	West	Franklin	Peds	West	Franklin	Granite	West	Peds	Granite	West	Franklin	Granite	Peds	Franklin	Granite	West	Granite	Peds	Total
5:00 PM	11	24	101	33	2	27	124	39	10	0	18	188	141	19	0	32	48	55	6	0	10	35	29	15	0	965
5:15 PM	15	36	89	9	0	6	138	31	8	1	36	197	141	10	0	14	66	62	16	2	7	35	28	27	0	971
5:30 PM	6	23	105	12	0	9	136	33	8	0	27	168	141	13	2	18	30	41	13	0	7	39	22	25	0	876
5:45 PM	11	19	97	9	0	9	111	28	13	0	30	154	150	7	0	19	33	56	8	0	4	50	19	11	1	838
Total:	43	102	392	63	2	51	509	131	39	1	111	707	573	49	2	83	177	214	43	2	28	159	98	78	1	3650
PHF:	0.72	0.71	0.93	0.48		0.47	0.92	0.84	0.75		0.77	0.90	0.96	0.64		0.65	0.67	0.86	0.67		0.70	0.80	0.84	0.72		
Truck%:	0.00%	0.00%	0.77%	0.00%		0.00%	1.77%	0.76%	0.00%		0.00%	0.28%	2.79%	2.04%		0.00%	0.56%	0.93%	0.00%		0.00%	0.63%	1.02%	1.28%		

AM Peak Period All Vehicles

		Frank	din Stree	t			G	Granite St	treet				Granite St	reet				West Str	reet			W	est Stree	et		
		Nor	thbound				No	ortheastb	ound				Southbou	und				Eastbou	Ind			W	estboun	d		
	Hard Left	Left	Thru	Right		Left	Thru	Right	Hard Right		Left	Thru	Right	Hard Right		Left		Right	Hard Right		Left	Left	Thru	Right	1	1
	to	to	to	to		to	to	to	to		to	to	to	to		to	Thru	to	to		to	to	to	to	1	Vehicle
Start Time	Granite	West	Granite	West	Peds	West	Granite	West	Franklin	Peds	West	Franklin	Granite	West	Peds	Granite	to West	Franklin	Granite	Peds	Franklin	Granite	West	Granite	Peds	Total
4:00 PM	9	21	100	4	1	5	129	25	5	2	19	166	127	12	3	21	33	58	2	1	4	36	25	19	0	820
4:15 PM	9	14	98	6	1	4	99	25	5	0	32	157	136	17	0	9	29	38	7	0	9	58	31	19	1	802
4:30 PM	10	28	102	9	2	15	132	33	6	2	35	170	121	12	0	21	42	44	10	0	6	37	33	15	0	881
4:45 PM	8	20	92	5	0	5	123	50	9	2	32	152	102	10	1	22	36	47	6	0	6	29	28	15	0	797
5:00 PM	11	24	101	33	2	27	124	39	10	0	18	188	141	19	0	32	48	55	6	0	10	35	29	15	0	965
5:15 PM	15	36	89	9	0	6	138	31	8	1	36	197	141	10	0	14	66	62	16	2	7	35	28	27	0	971
5:30 PM	6	23	105	12	0	9	136	33	8	0	27	168	141	13	2	18	30	41	13	0	7	39	22	25	0	876
5:45 PM	11	19	97	9	0	9	111	28	13	0	30	154	150	7	0	19	33	56	8	0	4	50	19	11	1	838
Total:	79	185	784	87	6	80	992	264	64	7	229	1352	1059	100	6	156	317	401	68	3	53	319	215	146	2	6950

APPENDIX C

SYNCHRO Analysis

Lane Group EBL2 EBL EBT EBR WBL WBT WBR WBR NBL2 NBL2 Lane Configurations 3 6 -4 78 -5 78 -5 78 -5 100 1900		٢	_*	+	\mathbf{F}	4	+	*	۲	1	٦	۲	~
Volume (vph) 118 106 155 51 46 175 835 14 31 688 89 14 local How (vph) 1900 1	Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBL2	NBL	NBR	NBR2
Volume (vph) 118 106 155 51 46 175 835 14 31 688 89 14 local How (vph) 1900 1	Lane Configurations		2	el el			र्भ	76			ă٣		
Satid Flow (prm) 0 1770 1809 0 0 1846 2787 0 0 3366 0 0 FIL Permitted 0.519 0.991 0.901 0 0 323 0 0 Righ Turn on Red Yes Yes Yes Yes Yes Yes Yes Satid. Flow (PRIOR) 30 30 30 30 117 Item Yes Satid. Flow (PRIOR) 515 Travel Time (S) 11.1 10.8 0.77 0.80 0.77 0.80 0.77 0.80 0.78 0.84 0.82 0.58 Shard Lanc Taffic (%) 11.1 1 0 0 991 0 0 992 0 0 Turn Type Perm Perm NA Split NA custom Permit NA Split NA	Volume (vph)	118			51	46		835	14	31		89	14
Fit Permited 0.519 0.991 0.910 Stat, Flow (perm) 0 0 1809 0 0 1846 2787 0 0 3223 0 0 Stat, Flow (perm) 0 967 1809 0 0 1846 2787 0 0 3223 0 0 Stat, Flow (PTOR) 5 84 117 Ves Yes Yes <td>Ideal Flow (vphpl)</td> <td>1900</td>	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satid Flow (perm) 0 967 1809 0 0 1846 2787 0 0 3223 0 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satid Flow (RTOR) 30 30 30 30 11.1 10.8 11.7 Tavel Thme (s) 11.1 10.8 0.70 0.70 0.80 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.77 0.68 0.80 0.70		0	1770	1809	0	0	1846	2787	0	0	3396	0	0
Right Tumon Rad Yes Yes Yes Yes Said. Flow (RTOR) 5 84 117 Int. Link Speed (mph) 30 30 30 Int. Tavel Time (s) 111 108 0.77 0.68 0.86 0.70 0.78 0.84 0.82 0.58 Shared Lane Traffic (%) 11 1 6 3 0 0 791 0 0 992 0 0 Tum Type Perm NA Split NA custom Perm NA 501 Na 501 10 0 0 992 0 0 Tum Type Perm Perm NA Split NA custom Perm NA 50	Flt Permitted		0.519				0.991				0.910		
Said. Flow (RTOR) 5 84 117 Link Speed (mph) 30 30 30 Link Distance (t) 489 473 515 Travel Time (s) 11.1 10.8 11.7 Peak Hour Factor 0.70 0.78 0.57 0.80 0.77 0.68 0.78 0.84 0.82 0.58 Shared Lane Traffic (%)	Satd. Flow (perm)	0	967	1809	0	0	1846	2787	0	0	3223	0	0
Said. Flow (RTOR) 5 84 117 Link Speed (mph) 30 30 30 30 Link Distance (t) 489 473 515 515 Travel Time (s) 11.1 10.8 11.7 515 Peak Hour Factor 0.70 0.78 0.81 0.82 0.58 Shared Lane Traffic (%)	Right Turn on Red				Yes				Yes				Yes
Link Distance (n) 489 473 515 Travel Time (s) 11.1 10.8 11.7 Peak Hour Factor 0.70 0.78 0.57 0.80 0.70 0.78 0.84 0.82 0.58 Shared Lane Traffic (%)	Satd. Flow (RTOR)			5				84			117		
Link Distance (n) 499 473 515 Travel Time (s) 11.1 10.8 11.7 Peak Hour Factor 0.70 0.78 0.57 0.80 0.70 0.84 0.82 0.58 Shared Lane Traffic (%)	Link Speed (mph)			30			30				30		
Travel Time (s) 11.1 10.8 11.7 Peak Hour Factor 0.70 0.78 0.80 0.77 0.68 0.80 0.70 0.78 0.84 0.82 0.58 Shared Lane Traffic (%) 0 305 336 0 0 317 991 0 0 992 0 0 Turn Type Perm Perm NA Split NA cs 3 3				489			473				515		
Peak Hour Factor 0.70 0.78 0.78 0.77 0.68 0.86 0.70 0.78 0.84 0.82 0.58 Shared Lane Traffic (%) 0 305 336 0 0 317 991 0 0 992 0 0 Turn Type Perm Perm NA Split NA custom Perm NA Protected Phases 4 1 1 6 3 3 Split Split NA split Split NA split Split NA split				11.1			10.8				11.7		
Shared Lane Traffic (%) Lane Group Flow (vph) 0 305 336 0 0 17 991 0 0 992 0 0 Urm Type Perm Perm NA Split NA custom Perm NA Protected Phases 4 1 1 6 3 3 Detector Phase 4 4 1 1 6 3 3 Switch Phase 4 4 1 1 6 3 3 3 Orientom Initial (S) 8.0 8.0 8.0 4.0 4.0 4.0 8.0 8.0 8.0 Minimum Split (S) 14.0 14.0 10.0 20.0 21.0 33.0 33.0 Total Split (S) 35.0 35.0 35.0 20.0 20.0 8.0 8.0 8.0 Vellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Vellow Time (s) 2.0 0.0 0.0 0.0 0.0 0.0 0.0		0.70	0.78	0.57	0.80	0.77	0.68	0.86	0.70	0.78	0.84	0.82	0.58
Lane Group Flow (vph) 0 305 336 0 0 317 991 0 0 992 0 0 Turn Type Perm Perm NA Split NA custom Perm NA Protected Phases 4 4 1 1 6 3 3 Detector Phase 4 4 1 1 6 3 3 Switch Phase 4 4 1 1 6 3 3 Switch Phase	Shared Lane Traffic (%)												
Turn Type Perm Perm NA Split NA custom Perm NA Protected Phases 4 1 1 6 3 Detector Phase 4 4 1 1 6 3 Detector Phase 4 4 1 1 6 3 Switch Phase	. ,	0	305	336	0	0	317	991	0	0	992	0	0
Protected Phases 4 1 1 1 6 3 Permitted Phases 4 4 1 1 6 3 Switch Phase 4 4 1 1 6 3 Switch Phase 5 1 6 3 3 Minimum Spitts (s) 14.0 14.0 20.0 20.0 21.0 33.0 33.0 Total Spitt (s) 17.9% 17.9% 17.9% 10.3% 10.3% 43.6% 28.2% 28.2% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0<						Split		custom		Perm	NA		
Permitted Phases 4 4 4 1 1 6 3 Detector Phase 4 4 4 1 1 1 6 3 3 Switch Phase Minimum Initial (s) 8.0 8.0 8.0 4.0 4.0 4.0 8.0 8.0 Minimum Split (s) 14.0 14.0 20.0 20.0 21.0 33.0 33.0 Total Split (s) 17.9% 17.9% 17.9% 10.3% 43.6% 28.2% 28.2% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0													
Detector Phase 4 4 4 1 1 6 3 3 Switch Phase		4	4					6		3			
Switch Phase Switch Phase Minimum Initial (s) 8.0 8.0 4.0 4.0 8.0 8.0 Minimum Split (s) 14.0 14.0 14.0 20.0 21.0 33.0 33.0 Total Split (s) 35.0 35.0 35.0 20.0 20.0 85.0 55.0 55.0 Total Split (s) 17.9% 17.9% 10.3% 43.6% 28.2% 28.2% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lead Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Recall Mode None None None None None None Act Eff Green (s) 29.1 29.1 14.0 65.8 94.8 Outrotal Delay 499.3 16				4		1	1	6			3		
Minimum Initial (s) 8.0 8.0 4.0 4.0 4.0 8.0 8.0 Minimum Split (s) 14.0 14.0 14.0 20.0 20.0 21.0 33.0 33.0 Total Split (s) 35.0 35.0 35.0 20.0 20.0 85.0 55.0 55.0 Total Split (s) 17.9% 17.9% 10.3% 10.3% 43.6% 28.2% 28.2% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 </td <td></td>													
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$		8.0	8.0	8.0		4.0	4.0	4.0		8.0	8.0		
Total Split (s)35.035.035.035.020.020.085.055.055.0Total Split (%)17.9%17.9%17.9%10.3%10.3%43.6%28.2%28.2%Yellow Time (s)4.04.04.04.04.04.04.04.0All-Red Time (s)2.02.02.02.02.02.02.0Lost Time Adjust (s)0.00.00.00.00.0Total Lost Time (s)6.06.06.06.06.0Lead-Lag Optimize?YesYesYesYesRecall ModeNoneNoneNoneMinNoneAct Effct Green (s)29.129.114.065.849.2Actuated g/C Ratio0.160.160.080.360.27v/c Ratio1.981.152.230.931.04Control Delay499.3161.3609.766.894.8LOSFFFFFApproach LOSFFFFStops (vph)137164129750646Fuel Used(gal)248291923CO Emissions (g/hr)332137469305368Dilemma Vehicles (#)000000Ouc Length 50th (ft)-569-471-614607-609Queue Length 50th (ft)-569340#623663#723Dilem	• •												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0													
All-Red Time (s) 2.0 1.0 1.0 0.0 0.0 0.0 1.0 <td></td>													
Lost Time Adjust (s)0.00.00.00.00.0Total Lost Time (s)6.06.06.06.06.0Lead/LagLagLagLagLagLeadLeadLead-Lag Optimize?YesYesYesRecall ModeNoneNoneNoneNoneMinNoneAct Effct Green (s)29.129.114.065.849.2Actuated g/C Ratio0.160.160.080.360.27v/c Ratio1.981.152.230.931.04Control Delay499.3161.3609.766.894.8Queue Delay0.00.00.00.00.0Total Delay499.3161.3609.766.894.8LOSFFFFApproach LOSFFFFStops (vph)137164129750646Fuel Used(gal)248291923CO Emissions (g/hr)1704591202413161589Nox Emissions (g/hr)332115394256309VOC Emissions (g/hr)395137469305368Dilemma Vehicles (#)00000Queue Length 50th (ft)-569-471-614607-609Queue Length 95th (ft)#695340#623663#723Internal Link Dist (ft)409393435435 </td <td>.,</td> <td></td>	.,												
Total Lost Time (s)6.06.06.06.06.0Lead/LagLagLagLagLagLeadLeadLead-Lag Optimize?YesYesYesRecall ModeNoneNoneNoneMinNoneAct Effct Green (s)29.129.114.0 65.8 49.2Actuated g/C Ratio0.160.160.080.360.27v/c Ratio1.981.152.230.931.04Control Delay499.3161.3609.766.894.8Queue Delay0.00.00.00.00.0Total Delay499.3161.3609.766.894.8LOSFFFFApproach Delay322.1198.494.8Approach LOSFFFFFFFStops (vph)137164129Yox Emissions (g/hr)170459120241316Nox Emissions (g/hr)332115394256Dilemma Vehicles (#)0000Queue Length 50th (ft)-569-471~614607Oueue Length 95th (ft)4695340#623663Jiermal Link Dist (ft)409393435	.,												
Lead/LagLagLagLagLagLeadLeadLead-Lag Optimize?YesYesYesRecall ModeNoneNoneNoneNoneMinNoneAct Effct Green (s)29.129.114.0 65.8 49.2Actuated g/C Ratio0.160.160.080.360.27v/c Ratio1.981.152.230.931.04Control Delay4'99.3161.36'09.766.894.8Queue Delay0.00.00.00.00.0Total Delay4'99.3161.36'09.766.894.8LOSFFFFFAproach Delay322.11'98.494.8Approach LOSFFFFStops (vph)137164129750646Fuel Used(gal)248291923CO Emissions (g/hr)332115394256309VOC Emissions (g/hr)395137469305368Dilemma Vehicles (#)000000Queue Length 50th (ft)-569-471-614607-609Queue Length 95th (ft)#695340#623663#723Internal Link Dist (ft)409393435435													
Lead-Lag Optimize?YesYesRecall ModeNoneNoneNoneNoneMinNoneNoneAct Effct Green (s)29.129.114.0 65.8 49.2Actuated g/C Ratio0.160.160.080.360.27v/c Ratio1.981.152.230.931.04Control Delay499.3161.3 609.7 66.8 94.8Queue Delay0.00.00.00.00.0Total Delay499.3161.3 609.7 66.8 94.8LOSFFFEFApproach Delay322.1198.494.8Approach LOSFFFFStops (vph)137164129750646Fuel Used(gal)248291923CO Emissions (g/hr)332115394256309VOC Emissions (g/hr)395137469305368Dilemma Vehicles (#)000000Queue Length 50th (ft) -569 -471 -614 607 -609 Queue Length 95th (ft)#695340#623663#723Internal Link Dist (ft)409393435435	. ,	Lag				Lead							
Recall ModeNoneNoneNoneNoneMinNoneNoneAct Effct Green (s) 29.1 29.1 14.0 65.8 49.2 Actuated g/C Ratio 0.16 0.16 0.08 0.36 0.27 \sqrt{c} Ratio 1.98 1.15 2.23 0.93 1.04 Control Delay 499.3 161.3 609.7 66.8 94.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 499.3 161.3 609.7 66.8 94.8 LOSFFFEFApproach Delay 322.1 198.4 94.8 Approach LOSFFFFStops (vph) 137 164 129 750 6466 Fuel Used(gal) 24 8 29 19 23 CO Emissions (g/hr) 132 115 394 256 309 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 0 0 0 0 0 Queue Length 50th (ft) -569 -471 -614 607 -609 Queue Length 95th (ft) $#695$ 340 $#623$ 663 $#723$ Internal Link Dist (ft) 409 393 435	0	5	5	5									
Act Effct Green (s)29.129.114.0 65.8 49.2Actuated g/C Ratio0.160.160.080.360.27v/c Ratio1.981.152.230.931.04Control Delay499.3161.3609.766.894.8Queue Delay0.00.00.00.00.0Total Delay499.3161.3609.766.894.8LOSFFFFFApproach Delay322.1198.494.8Approach Delay322.1198.494.8Approach LOSFFFFStops (vph)137164129750CO Emissions (g/hr)1704591202413161589NOx Emissions (g/hr)395137469305368Dilemma Vehicles (#)00000Queue Length 50th (ft) -569 -471 -614 607 -609 Queue Length 55th (ft)409393435435		None	None	None				Min		None	None		
Actuated g/C Ratio 0.16 0.16 0.08 0.36 0.27 v/c Ratio 1.98 1.15 2.23 0.93 1.04 Control Delay 499.3 161.3 609.7 66.8 94.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 499.3 161.3 609.7 66.8 94.8 LOSFFFEFApproach Delay 322.1 198.4 94.8 Approach LOSFFFFStops (vph) 137 164 129 750 646 Fuel Used(gal) 24 8 29 19 23 CO Emissions (g/hr) 1704 591 2024 1316 1589 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#)000000Queue Length 50th (ft) -569 -471 -614 607 -609 Queue Length 95th (ft) $#695$ 340 $#623$ 663 $#723$ Internal Link Dist (ft) 409 393 435 435													
v/c Ratio 1.98 1.15 2.23 0.93 1.04 Control Delay 499.3 161.3 609.7 66.8 94.8 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 499.3 161.3 609.7 66.8 94.8 LOSFFFEFApproach Delay 322.1 198.4 94.8 Approach LOSFFFFStops (vph) 137 164 129 750 6466 Fuel Used(gal) 24 8 29 19 23 CO Emissions (g/hr) 1704 591 2024 1316 1589 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#)000000Queue Length 50th (ft) -569 -471 -614 607 -609 Queue Length 95th (ft) $#695$ 340 $#623$ 663 $#723$ Internal Link Dist (ft) 409 393 435 435	.,												
Control Delay 499.3 161.3 609.7 66.8 94.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 499.3 161.3 609.7 66.8 94.8 LOS F F F E F Approach Delay 322.1 198.4 94.8 94.8 Approach LOS F F F F Stops (vph) 137 164 129 750 646 Fuel Used(gal) 24 8 29 19 23 CO Emissions (g/hr) 1704 591 2024 1316 1589 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 0 0 0 0 0 Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 0													
Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 499.3 161.3 609.7 66.8 94.8 LOS F F F E F Approach Delay 322.1 198.4 94.8 Approach LOS F F F F Stops (vph) 137 164 129 750 646 Fuel Used(gal) 24 8 29 19 23 CO Emissions (g/hr) 1704 591 2024 1316 1589 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 0 0 0 0 0 Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft)													
Total Delay 499.3 161.3 609.7 66.8 94.8 LOS F F F E F Approach Delay 322.1 198.4 94.8 Approach LOS F F F Stops (vph) 137 164 129 750 646 Fuel Used(gal) 24 8 29 19 23 CO Emissions (g/hr) 1704 591 2024 1316 1589 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 0 0 0 0 Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft) 409 393 435 435													
LOS F F F E F Approach Delay 322.1 198.4 94.8 Approach LOS F F F Stops (vph) 137 164 129 750 646 Fuel Used(gal) 24 8 29 19 23 CO Emissions (g/hr) 1704 591 2024 1316 1589 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 0 0 0 0 Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft) 409 393 435 435	3												
Approach Delay 322.1 198.4 94.8 Approach LOS F F F Stops (vph) 137 164 129 750 646 Fuel Used(gal) 24 8 29 19 23 CO Emissions (g/hr) 1704 591 2024 1316 1589 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 0 0 0 0 Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft) 409 393 435 435													
Approach LOSFFFStops (vph)137164129750646Fuel Used(gal)248291923CO Emissions (g/hr)1704591202413161589NOx Emissions (g/hr)332115394256309VOC Emissions (g/hr)395137469305368Dilemma Vehicles (#)00000Queue Length 50th (ft)~569~471~614607~609Queue Length 95th (ft)#695340#623663#723Internal Link Dist (ft)409393435435													
Stops (vph)137164129750646Fuel Used(gal)248291923CO Emissions (g/hr)1704591202413161589NOx Emissions (g/hr)332115394256309VOC Emissions (g/hr)395137469305368Dilemma Vehicles (#)00000Queue Length 50th (ft)~569~471~614607~609Queue Length 95th (ft)#695340#623663#723Internal Link Dist (ft)409393435435													
Fuel Used(gal)248291923CO Emissions (g/hr)1704591202413161589NOx Emissions (g/hr)332115394256309VOC Emissions (g/hr)395137469305368Dilemma Vehicles (#)00000Queue Length 50th (ft)~569~471~614607~609Queue Length 95th (ft)#695340#623663#723Internal Link Dist (ft)409393435435			137	164				750					
CO Emissions (g/hr) 1704 591 2024 1316 1589 NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 0 0 0 0 Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft) 409 393 435 435													
NOx Emissions (g/hr) 332 115 394 256 309 VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 0 0 0 0 Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft) 409 393 435 435													
VOC Emissions (g/hr) 395 137 469 305 368 Dilemma Vehicles (#) 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Dilemma Vehicles (#) 0 0 0 0 0 Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft) 409 393 435													
Queue Length 50th (ft) ~569 ~471 ~614 607 ~609 Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft) 409 393 435	N												
Queue Length 95th (ft) #695 340 #623 663 #723 Internal Link Dist (ft) 409 393 435													
Internal Link Dist (ft) 409 393 435													
	Turn Bay Length (ft)			107			575				100		

AM Peak Hour Existing Conditions

Synchro 8 Report Page 1

	۲	` +	\mathbf{F}	4	6	¥	~	×	
Lane Group	SEL2	SEL	SER	SER2	SWL2	SWL	SWR	SWR2	
Lane Configurations		ă٣	R.			ă	đ.		
Volume (vph)	29	201	288	39	16	130	141	148	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	
Satd. Flow (prot)	0	3403	1441	0	0	1770	1583	0	
Flt Permitted		0.560				0.950			
Satd. Flow (perm)	0	1991	1441	0	0	1770	1583	0	
Right Turn on Red	-			Yes	-			Yes	
Satd. Flow (RTOR)			117				84		
Link Speed (mph)		30				30	0.		
Link Distance (ft)		577				518			
Travel Time (s)		13.1				11.8			
Peak Hour Factor	0.66	0.85	0.85	0.75	0.40	0.83	0.80	0.86	
Shared Lane Traffic (%)	0.00	0.00	10%	0.70	0.10	0.00	0.00	0.00	
Lane Group Flow (vph)	0	314	357	0	0	197	348	0	
Turn Type	Perm	NA	Perm	0	custom	NA	custom	0	
Protected Phases	T OITH	2	T OIIII		8	8	7		
Permitted Phases	2	2	2		7	0	7		
Detector Phase	2	2	2		8	8	7		
Switch Phase	2	2	2		0	0	,		
Minimum Initial (s)	10.0	10.0	10.0		6.0	6.0	6.0		
Minimum Split (s)	16.0	16.0	16.0		12.0	12.0	12.0		
Total Split (s)	65.0	65.0	65.0		20.0	20.0	55.0		
Total Split (%)	33.3%	33.3%	33.3%		10.3%	10.3%	28.2%		
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	2.0		
Lost Time Adjust (s)	2.0	0.0	0.0		2.0	0.0	0.0		
Total Lost Time (s)		6.0	6.0			6.0	6.0		
Lead/Lag	Lag	Lag	Lag		Lead	Lead	0.0		
Lead-Lag Optimize?	Yes	Yes	Yes		LCuu	Louu			
Recall Mode	Min	Min	Min		None	None	None		
Act Effct Green (s)	IVIIII	45.8	45.8		NOTIC	14.0	49.2		
Actuated g/C Ratio		0.25	0.25			0.08	0.27		
v/c Ratio		0.23 0.86dl	0.20			1.45	0.71		
Control Delay		66.0	55.3			289.6	55.7		
Queue Delay		0.0	0.0			0.0	0.0		
Total Delay		66.0	55.3			289.6	55.7		
LOS		00.0 E	55.5 E			209.0 F	55.7 E		
Approach Delay		60.3	Ŀ			140.2	L		
Approach LOS		00.3 E				F			
Stops (vph)		223	193			104	203		
Fuel Used(gal)		6	6			104	203		
CO Emissions (g/hr)		411	403			683	389		
NOx Emissions (g/hr)		411 80	403			133	389 76		
VOC Emissions (g/hr)		80 95	93			158	70 90		
Dilemma Vehicles (#)		95 0	93			158	90		
· /		173					297		
Queue Length 50th (ft)		213	309 410			~322 #484	381		
Queue Length 95th (ft)		213 497	410				30 I		
Internal Link Dist (ft)		497				438			
Turn Bay Length (ft)									

AM Peak Hour Existing Conditions

Safety & Operations - Braintree

1: Granite Street & West Street EB/Franklin Street (Rte 37) & Granite Street (Rte 37) & West Street WB

	۲	∡	-	\mathbf{r}	∢	+	*	۲	1	٦	۲	۲
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBL2	NBL	NBR	NBR2
Base Capacity (vph)		154	293			142	1259			955		
Starvation Cap Reductn		0	0			0	0			0		
Spillback Cap Reductn		0	0			0	0			0		
Storage Cap Reductn		0	0			0	0			0		
Reduced v/c Ratio		1.98	1.15			2.23	0.79			1.04		
Intersection Summary												
Area Type:	Other											
Cycle Length: 195												
Actuated Cycle Length: 18	Actuated Cycle Length: 182.2											
Natural Cycle: 125												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 2.23												
Intersection Signal Delay:	162.8			In	tersectior	LOS: F						
Intersection Capacity Utiliz	ation 91.0%			IC	CU Level o	of Service	E					
Analysis Period (min) 15												
 Volume exceeds capacity, queue is theoretically infinite. 												
Queue shown is maxim	um after two	cycles.										
# 95th percentile volume	exceeds cap	acity, qu	eue may	be longei	r.							
Queue shown is maxim	um after two	cycles.										
II. Defected and the Deceder with 4 threads have a scheduler.												

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 1: Granite Street & West Street EB/Franklin Street (Rte 37) & Granite Street (Rte 37) & West Street WB

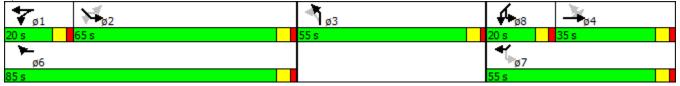
₹ø1	₩ _{ø2}	₫ ø3	4 ₀8	ø4
20 s	65 s	55 s	20 s	35 s
*			₹.	
ø6			¹ ø7	
85 s			55 s	

	4	\searrow	\mathbf{F}	4	6	¥	~	*~	
Lane Group	SEL2	SEL	SER	SER2	SWL2	SWL	SWR	SWR2	
Base Capacity (vph)		646	547			136	488		
Starvation Cap Reductn		0	0			0	0		
Spillback Cap Reductn		0	0			0	0		
Storage Cap Reductn		0	0			0	0		
Reduced v/c Ratio		0.49	0.65			1.45	0.71		
Intersection Summary									

	۲	-*	+	7	4	+	*	۲	1	۲	۲	1
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBL2	NBL	NBR	NBR2
Lane Configurations		ĽV	el el			र्भ	76			ă٣		
Volume (vph)	83	177	214	43	43	102	392	63	51	509	131	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	1770	1805	0	0	1837	2787	0	0	3355	0	0
Flt Permitted		0.805				0.986				0.750		
Satd. Flow (perm)	0	1500	1805	0	0	1837	2787	0	0	2613	0	0
Right Turn on Red				Yes				Yes				Yes
Satd. Flow (RTOR)			6				84			117		
Link Speed (mph)			30			30				30		
Link Distance (ft)			489			473				515		
Travel Time (s)			11.1			10.8				11.7		
Peak Hour Factor	0.65	0.67	0.86	0.67	0.72	0.71	0.93	0.48	0.47	0.92	0.84	0.75
Shared Lane Traffic (%)	0.00	0.07	0.00	0.07	0.72	0.71	0.70	0.10	0.17	0.72	0.01	0.70
Lane Group Flow (vph)	0	392	313	0	0	204	553	0	0	870	0	0
Turn Type	Perm	Perm	NA	0	Split	NA	custom	0	Perm	NA	0	U
Protected Phases	T CHI	T CHII	4		3piit 1	1	6		T CHII	3		
Permitted Phases	4	4	4		1	1	6		3	J		
Detector Phase	4	4	4		1	1	6		3	3		
Switch Phase	4	4	4		1	I	U		J	3		
Minimum Initial (s)	8.0	8.0	8.0		4.0	4.0	4.0		8.0	8.0		
Minimum Split (s)	14.0	14.0	14.0		20.0	20.0	4.0		33.0	33.0		
Total Split (s)	35.0	35.0	35.0		20.0	20.0	85.0		55.0	55.0		
Total Split (%)	17.9%	35.0 17.9%	35.0 17.9%		10.3%	10.3%	43.6%		28.2%	28.2%		
	4.0	4.0			4.0	4.0	43.0%		4.0			
Yellow Time (s)	4.0 2.0		4.0			4.0	4.0			4.0		
All-Red Time (s)	2.0	2.0	2.0 0.0		2.0	0.0	0.0		2.0	2.0 0.0		
Lost Time Adjust (s)		0.0										
Total Lost Time (s)	امم	6.0	6.0		Lood	6.0	6.0			6.0		
Lead/Lag	Lag	Lag	Lag		Lead	Lead						
Lead-Lag Optimize?	Mana	Mana	Mana		Yes	Yes	N /1:		Mana	Mana		
Recall Mode	None	None	None		None	None	Min		None	None		
Act Effct Green (s)		29.0	29.0			14.0	79.0			49.0		_
Actuated g/C Ratio		0.15	0.15			0.07	0.41			0.25		
v/c Ratio		1.76	1.15			1.56	0.47			1.17		_
Control Delay		400.4	167.3			335.5	37.1			142.5		
Queue Delay		0.0	0.0			0.0	0.0			0.0		_
Total Delay		400.4	167.3			335.5	37.1			142.5		
LOS		F	F			F	D			F		_
Approach Delay			296.9			117.5				142.5		
Approach LOS		4/7	F			F	001			F		_
Stops (vph)		167	213			100	281			544		
Fuel Used(gal)		23	11			11	7			27		_
CO Emissions (g/hr)		1615	763			768	466			1895		
NOx Emissions (g/hr)		314	148			149	91			369		
VOC Emissions (g/hr)		374	177			178	108			439		
Dilemma Vehicles (#)		0	0			0	0			0		
Queue Length 50th (ft)		~744	~462			~366	251			~621		
Queue Length 95th (ft)		#649	#633			#401	315			#759		
Internal Link Dist (ft)			409			393				435		
Turn Bay Length (ft)												

PM Peak Hour Existing Conditions

	4	` +	\mathbf{F}	4	6	¥	~	×	
Lane Group	SEL2	SEL	SER	SER2	SWL2	SWL	SWR	SWR2	
Lane Configurations		ăM	R.			Ä	1		
Volume (vph)	111	707	573	49	28	159	98	78	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	
Satd. Flow (prot)	0	3420	1441	0	0	1770	1583	0	
Flt Permitted		0.741				0.950			
Satd. Flow (perm)	0	2654	1441	0	0	1770	1583	0	
Right Turn on Red				Yes				Yes	
Satd. Flow (RTOR)			117				84		
Link Speed (mph)		30				30			
Link Distance (ft)		577				518			
Travel Time (s)		13.1				11.8			
Peak Hour Factor	0.77	0.90	0.96	0.64	0.70	0.80	0.84	0.72	
Shared Lane Traffic (%)			10%						
Lane Group Flow (vph)	0	990	614	0	0	239	225	0	
Turn Type	Perm	NA	Perm		custom	NA	custom		
Protected Phases		2			8	8	7		
Permitted Phases	2		2		7		7		
Detector Phase	2	2	2		8	8	7		
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0		6.0	6.0	6.0		
Minimum Split (s)	16.0	16.0	16.0		12.0	12.0	12.0		
Total Split (s)	65.0	65.0	65.0		20.0	20.0	55.0		
Total Split (%)	33.3%	33.3%	33.3%		10.3%	10.3%	28.2%		
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	2.0		
Lost Time Adjust (s)		0.0	0.0			0.0	0.0		
Total Lost Time (s)		6.0	6.0			6.0	6.0		
Lead/Lag	Lag	Lag	Lag		Lead	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes						
Recall Mode	Min	Min	Min		None	None	None		
Act Effct Green (s)		59.0	59.0			14.0	49.0		
Actuated g/C Ratio		0.30	0.30			0.07	0.25		
v/c Ratio		1.23	1.19			1.88	0.49		
Control Delay		169.5	147.5			465.6	42.2		
Queue Delay		0.0	0.0			0.0	0.0		
Total Delay		169.5	147.5			465.6	42.2		
LOS		F	F			F	D		
Approach Delay		161.0				260.3			
Approach LOS		F				F			
Stops (vph)		718	394			116	95		
Fuel Used(gal)		38	22			19	3		
CO Emissions (g/hr)		2665	1515			1337	192		
NOx Emissions (g/hr)		519	295			260	37		
VOC Emissions (g/hr)		618	351			310	45		
Dilemma Vehicles (#)		0	0			0	0		
Queue Length 50th (ft)		~805	~917			~466	156		
Queue Length 95th (ft)		#943	#1200			#569	225		
Internal Link Dist (ft)		497				438	220		
Turn Bay Length (ft)		.,,				100			


PM Peak Hour Existing Conditions

Safety & Operations - Braintree

1: Granite Street & West Street EB/Franklin Street (Rte 37) & Granite Street (Rte 37) & West Street WB

	٢	_#	-	\mathbf{F}	4	+	*	۲	•	٦	۲	1
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBL2	NBL	NBR	NBR2
Base Capacity (vph)		223	273			131	1179			744		
Starvation Cap Reductn		0	0			0	0			0		
Spillback Cap Reductn		0	0			0	0			0		
Storage Cap Reductn		0	0			0	0			0		
Reduced v/c Ratio		1.76	1.15			1.56	0.47			1.17		
Intersection Summary												
Area Type:	Other											
Cycle Length: 195												
Actuated Cycle Length: 195												
Natural Cycle: 145												
Control Type: Actuated-Unc	coordinated											
Maximum v/c Ratio: 1.88												
Intersection Signal Delay: 1	82.1			In	tersection	LOS: F						
Intersection Capacity Utiliza	ntion 108.7%)		IC	U Level c	of Service	G					
Analysis Period (min) 15												
 Volume exceeds capaci 	 Volume exceeds capacity, queue is theoretically infinite. 											
Queue shown is maximu	im after two	cycles.										
# 95th percentile volume	exceeds cap	acity, que	eue may	be longer	ſ.							
Queue shown is maximu	im after two	cycles.										

Splits and Phases: 1: Granite Street & West Street EB/Franklin Street (Rte 37) & Granite Street (Rte 37) & West Street WB

		\searrow	\mathbf{F}	4	6	¥	~	*	
Lane Group	SEL2	SEL	SER	SER2	SWL2	SWL	SWR	SWR2	
Base Capacity (vph)		803	517			127	460		
Starvation Cap Reductn		0	0			0	0		
Spillback Cap Reductn		0	0			0	0		
Storage Cap Reductn		0	0			0	0		
Reduced v/c Ratio		1.23	1.19			1.88	0.49		
Intersection Summary									

	٢	_	+	*	4	+	*	۲	1	۲	۲	/
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBL2	NBL	NBR	NBR2
Lane Configurations		Ľ.	el el			र्भ	76			ă٣		
Volume (vph)	118	106	155	51	46	175	835	14	31	688	89	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	1770	1809	0	0	1846	2787	0	0	3396	0	0
Flt Permitted		0.649				0.991				0.913		
Satd. Flow (perm)	0	1209	1809	0	0	1846	2787	0	0	3233	0	0
Right Turn on Red				Yes				Yes				Yes
Satd. Flow (RTOR)			8				131			183		
Link Speed (mph)			30			30				30		
Link Distance (ft)			489			473				515		
Travel Time (s)			11.1			10.8				11.7		
Peak Hour Factor	0.70	0.78	0.57	0.80	0.77	0.68	0.86	0.70	0.78	0.84	0.82	0.58
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	305	336	0	0	317	991	0	0	992	0	0
Turn Type	Perm	Perm	NA	0	Split	NA	custom	Ŭ	Perm	NA	Ū	Ŭ
Protected Phases	1 01111	1 01111	4		1	1	6			3		
Permitted Phases	4	4			·		6		3	Ū		
Detector Phase	4	4	4		1	1	6		3	3		
Switch Phase	•	•	•		•	•	Ū		U	U		
Minimum Initial (s)	8.0	8.0	8.0		4.0	4.0	4.0		8.0	8.0		
Minimum Split (s)	14.0	14.0	14.0		20.0	20.0	21.0		33.0	33.0		
Total Split (s)	28.0	28.0	28.0		23.0	23.0	48.0		33.0	33.0		
Total Split (%)	22.4%	22.4%	22.4%		18.4%	18.4%	38.4%		26.4%	26.4%		
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0	4.0		4.0	4.0		
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	2.0		2.0	2.0		
Lost Time Adjust (s)	2.0	0.0	0.0		2.0	0.0	0.0		2.0	0.0		
Total Lost Time (s)		6.0	6.0			6.0	6.0			6.0		
Lead/Lag	Lag	Lag	Lag		Lead	Lead	0.0			0.0		
Lead-Lag Optimize?	Lug	Lug	Lug		Yes	Yes						
Recall Mode	None	None	None		None	None	Min		None	None		
Act Effct Green (s)	100110	22.0	22.0		10110	17.0	42.0		Homo	27.0		
Actuated g/C Ratio		0.18	0.18			0.14	0.34			0.22		
v/c Ratio		1.44	1.04			1.26	0.97			1.18		
Control Delay		259.7	108.8			189.9	57.2			128.3		
Queue Delay		0.0	0.0			0.0	0.0			0.0		
Total Delay		259.7	108.8			189.9	57.2			128.3		
LOS		207.7 F	F			F	57.2 E			F		
Approach Delay		1	180.6			89.4	L			128.3		
Approach LOS			F			F				F		
Stops (vph)		165	173			174	682			569		
Fuel Used(gal)		103	6			10	17			28		
CO Emissions (g/hr)		951	441			721	1174			1951		
NOx Emissions (g/hr)		185	86			140	228			380		
VOC Emissions (g/hr)		220	102			140	272			452		
Dilemma Vehicles (#)		220	0			107	0			45Z 0		
Queue Length 50th (ft)		~334	~286			~322	400			~432		
Queue Length 95th (ft)		#423	220			#330	#511			#498 425		
Internal Link Dist (ft)			409			393				435		
Turn Bay Length (ft)												

AM Peak Hour Alt 1 - Retiming Signal with Existing Geometry

	-	\	\mathbf{i}	4	6	¥	~	*	
Lane Group	SEL2	SEL	SER	SER2	SWL2	SWL	SWR	SWR2	
Lane Configurations		ăM	r de la companya de l			Ä	đ.		
Volume (vph)	29	201	288	39	16	130	141	148	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	
Satd. Flow (prot)	0	3403	1441	0	0	1770	1583	0	
Flt Permitted		0.553				0.950			
Satd. Flow (perm)	0	1966	1441	0	0	1770	1583	0	
Right Turn on Red				Yes				Yes	
Satd. Flow (RTOR)			183				131		
Link Speed (mph)		30				30			
Link Distance (ft)		577				518			
Travel Time (s)		13.1				11.8			
Peak Hour Factor	0.66	0.85	0.85	0.75	0.40	0.83	0.80	0.86	
Shared Lane Traffic (%)			10%						
Lane Group Flow (vph)	0	314	357	0	0	197	348	0	
Turn Type	Perm	NA	Perm		custom	NA	custom		
Protected Phases		2			8	8	7		
Permitted Phases	2		2		7		7		
Detector Phase	2	2	2		8	8	7		
Switch Phase	_	_	_		-	-			
Minimum Initial (s)	10.0	10.0	10.0		6.0	6.0	6.0		
Minimum Split (s)	16.0	16.0	16.0		12.0	12.0	12.0		
Total Split (s)	25.0	25.0	25.0		16.0	16.0	44.0		
Total Split (%)	20.0%	20.0%	20.0%		12.8%	12.8%	35.2%		
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	2.0		
Lost Time Adjust (s)	2.0	0.0	0.0		2.0	0.0	0.0		
Total Lost Time (s)		6.0	6.0			6.0	6.0		
Lead/Lag	Lag	Lag	Lag		Lead	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes						
Recall Mode	Min	Min	Min		None	None	None		
Act Effct Green (s)		19.0	19.0			10.0	38.0		
Actuated g/C Ratio		0.15	0.15			0.08	0.30		
v/c Ratio		1.05	0.95			1.40	0.61		
Control Delay		117.6	62.3			257.5	27.7		
Queue Delay		0.0	0.0			0.0	0.0		
Total Delay		117.6	62.3			257.5	27.7		
LOS		F	E			F	С		
Approach Delay		88.2	_			110.8	Ū		
Approach LOS		F				F			
Stops (vph)		220	131			107	159		
Fuel Used(gal)		9	6			9	4		
CO Emissions (g/hr)		600	409			618	257		
NOx Emissions (g/hr)		117	79			120	50		
VOC Emissions (g/hr)		139	95			143	60		
Dilemma Vehicles (#)		0	0			0	0		
Queue Length 50th (ft)		~142	165			~212	149		
Queue Length 95th (ft)		#217	#330			#328	204		
Internal Link Dist (ft)		#217 497	100			#320 438	204		
Turn Bay Length (ft)		+77				400			

AM Peak Hour Alt 1 - Retiming Signal with Existing Geometry

Safety & Operations - Braintree

1: Granite Street & West Street EB/Franklin Street (Rte 37) & Granite Street (Rte 37) & West Street WB

	۲	_#	-	\mathbf{r}	∢	←	*	۲	1	٦	۲	۲
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBL2	NBL	NBR	NBR2
Base Capacity (vph)		212	324			251	1023			841		
Starvation Cap Reductn		0	0			0	0			0		
Spillback Cap Reductn		0	0			0	0			0		
Storage Cap Reductn		0	0			0	0			0		
Reduced v/c Ratio		1.44	1.04			1.26	0.97			1.18		
Intersection Summary												
Area Type:	Other											
Cycle Length: 125												
Actuated Cycle Length: 125	ō											
Natural Cycle: 125												
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 1.44												
Intersection Signal Delay: 1	15.3			In	tersectior	n LOS: F						
Intersection Capacity Utiliza	ation 91.0%			IC	CU Level o	of Service	E					
Analysis Period (min) 15												
 Volume exceeds capac 			ally infini	te.								
Queue shown is maximu												
# 95th percentile volume		5 1	eue may	be longei	r.							
Queue shown is maximu	um after two	cycles.										

Splits and Phases: 1: Granite Street & West Street EB/Franklin Street (Rte 37) & Granite Street (Rte 37) & West Street WB

7 ø1	₩ _{ø2}	A #3	4 _{ø8}	
23 s	25 s	33 s	16 s	28 s
▶- ø6			€ ø7	
48 s			44 s	

		\searrow	\mathbf{F}	4	6	¥	~	*	
Lane Group	SEL2	SEL	SER	SER2	SWL2	SWL	SWR	SWR2	
Base Capacity (vph)		298	374			141	572		
Starvation Cap Reductn		0	0			0	0		
Spillback Cap Reductn		0	0			0	0		
Storage Cap Reductn		0	0			0	0		
Reduced v/c Ratio		1.05	0.95			1.40	0.61		
Intersection Summary									

	۲		+	*	4	+	*_	۲	•	٦	۲	/
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBL2	NBL	NBR	NBR2
Lane Configurations		ž,	ef 👘			र्स	75			ă٣		
Volume (vph)	83	177	214	43	43	102	392	63	51	509	131	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	1770	1805	0	0	1837	2787	0	0	3355	0	0
Flt Permitted		0.805				0.106				0.769		
Satd. Flow (perm)	0	1500	1805	0	0	197	2787	0	0	2679	0	0
Right Turn on Red				Yes				Yes				Yes
Satd. Flow (RTOR)			7				164			164		
Link Speed (mph)			30			30				30		
Link Distance (ft)			489			473				515		
Travel Time (s)			11.1			10.8				11.7		
Peak Hour Factor	0.65	0.67	0.86	0.67	0.72	0.71	0.93	0.48	0.47	0.92	0.84	0.75
Shared Lane Traffic (%)	0100	0107	0.00	0107	0.72	0.7.1	0170	0110	0.17	0.72	0101	0.70
Lane Group Flow (vph)	0	392	313	0	0	204	553	0	0	870	0	0
Turn Type	Perm	Perm	NA	Ū	custom	NA		U	Perm	NA	Ū	U
Protected Phases	1 0111	1 01111	4		oustonn		6		1 01111	3		
Permitted Phases	4	4	•		6	6	6		3	0		
Detector Phase	4	4	4		6	6	6		3	3		
Switch Phase		•	•		U	0	Ū		0	0		
Minimum Initial (s)	8.0	8.0	8.0		4.0	4.0	4.0		8.0	8.0		
Minimum Split (s)	14.0	14.0	14.0		21.0	21.0	21.0		33.0	33.0		
Total Split (s)	21.0	21.0	21.0		54.0	54.0	54.0		34.0	34.0		
Total Split (%)	15.0%	15.0%	15.0%		38.6%	38.6%	38.6%		24.3%	24.3%		
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0	4.0		4.0	4.0		
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	2.0		2.0	2.0		
Lost Time Adjust (s)	2.0	0.0	0.0		2.0	0.0	0.0		2.0	0.0		
Total Lost Time (s)		6.0	6.0			6.0	6.0			6.0		
Lead/Lag	Lag	Lag	Lag		Lag	Lag	Lag			0.0		
Lead-Lag Optimize?	Lug	Lug	Lug		Yes	Yes	Yes					
Recall Mode	None	None	None		Min	Min	Min		None	None		
Act Effct Green (s)	NULL	15.0	15.0		IVIIII	48.0	48.0		NOTIC	28.0		
Actuated g/C Ratio		0.11	0.11			0.34	0.34			0.20		
v/c Ratio		2.45	1.57			3.04	0.54			1.30		
Control Delay		695.9	318.9			976.7	27.1			183.2		
Queue Delay		0,0	0.0			0.0	0.0			0.0		
Total Delay		695.9	318.9			976.7	27.1			183.2		
LOS		675.7 F	510.7 F			F	C			F		
Approach Delay		1	528.5			283.0	U			183.2		
Approach LOS			520.5 F			203.0 F				F		
Stops (vph)		161	178			91	253			471		
Fuel Used(gal)		39	170			30	6			33		
CO Emissions (g/hr)		2706	1303			2088	391			2290		
NOx Emissions (g/hr)		527	254			406	76			446		
VOC Emissions (g/hr)		627	302			406	70 91			440 531		
Dilemma Vehicles (#)		027				484	91			0		
Queue Length 50th (ft)		~589	0 ~400			~265	159			~459		
			~400 #559				223					
Queue Length 95th (ft)		#553				#313 393	223			#592		
Internal Link Dist (ft)			409			373				435		
Turn Bay Length (ft)												

PM Peak Hour Alt 1 - Retiming Signals with Existing Geometry Synchro 8 Report Page 1

	*	\	\rightarrow	4	6	¥	~	*		
Lane Group	SEL2	SEL	SER	SER2	SWL2	SWL	SWR	SWR2	ø2	
Lane Configurations		ăM	R.			Ä	r.			
Volume (vph)	111	707	573	49	28	159	98	78		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900		
Satd. Flow (prot)	0	3410	1441	0	0	1770	1583	0		
Flt Permitted		0.621				0.950				
Satd. Flow (perm)	0	2215	1441	0	0	1770	1583	0		
Right Turn on Red				Yes				Yes		
Satd. Flow (RTOR)			117				117			
Link Speed (mph)		30				30				
Link Distance (ft)		577				518				
Travel Time (s)		13.1				11.8				
Peak Hour Factor	0.77	0.90	0.96	0.64	0.70	0.80	0.84	0.72		
Shared Lane Traffic (%)			15%							
Lane Group Flow (vph)	0	1020	584	0	0	239	225	0		
Turn Type	custom	NA	custom		custom	NA	custom			
Protected Phases	5	5	5		8	8	7		2	
Permitted Phases	2	2	2		7		7			
Detector Phase	5	5	5		8	8	7			
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0		6.0	6.0	6.0		10.0	
Minimum Split (s)	16.0	16.0	16.0		12.0	12.0	12.0		16.0	
Total Split (s)	16.0	16.0	16.0		15.0	15.0	36.0		70.0	
Total Split (%)	11.4%	11.4%	11.4%		10.7%	10.7%	25.7%		50%	
Yellow Time (s)	4.0	4.0	4.0		4.0	4.0	4.0		4.0	
All-Red Time (s)	2.0	2.0	2.0		2.0	2.0	2.0		2.0	
Lost Time Adjust (s)		0.0	0.0			0.0	0.0			
Total Lost Time (s)		6.0	6.0			6.0	6.0			
Lead/Lag	Lead	Lead	Lead		Lead	Lead				
Lead-Lag Optimize?	Yes	Yes	Yes							
Recall Mode	Min	Min	Min		None	None	None		Min	
Act Effct Green (s)		64.0	64.0			9.0	30.0			
Actuated g/C Ratio		0.46	0.46			0.06	0.21			
v/c Ratio		0.93	0.81			2.12	0.52			
Control Delay		49.0	36.1			559.9	27.6			
Queue Delay		0.0	0.0			0.0	0.0			
Total Delay		49.0	36.1			559.9	27.6			
LOS		D	D			F	С			
Approach Delay		44.3				301.8				
Approach LOS		D				F				
Stops (vph)		657	385			118	77			
Fuel Used(gal)		17	8			23	2			
CO Emissions (g/hr)		1169	592			1588	149			
NOx Emissions (g/hr)		227	115			309	29			
VOC Emissions (g/hr)		271	137			368	34			
Dilemma Vehicles (#)		0	0			000	0			
Queue Length 50th (ft)		364	410			~344	85			
Queue Length 95th (ft)		#480	608			#448	151			
Internal Link Dist (ft)		497	500			438	101			
Turn Bay Length (ft)		.,,				100				

PM Peak Hour Alt 1 - Retiming Signals with Existing Geometry

Safety & Operations - Braintree

1: Granite Street & West Street EB/Franklin Street (Rte 37) & Granite Street (Rte 37) & West Street WB

	٢	_	-	\mathbf{r}	1	←	*_	۲	1	٦	۲	1
Lane Group	EBL2	EBL	EBT	EBR	WBL	WBT	WBR	WBR2	NBL2	NBL	NBR	NBR2
Base Capacity (vph)		160	199			67	1063			667		
Starvation Cap Reductn		0	0			0	0			0		
Spillback Cap Reductn		0	0			0	0			0		
Storage Cap Reductn		0	0			0	0			0		
Reduced v/c Ratio		2.45	1.57			3.04	0.52			1.30		
Intersection Summary												
Area Type:	Other											
Cycle Length: 140												
Actuated Cycle Length: 140)											
Natural Cycle: 140												
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 3.04												
Intersection Signal Delay: 2					tersection							
Intersection Capacity Utiliza	ation 108.7%)		IC	CU Level c	of Service	G					
Analysis Period (min) 15												
 Volume exceeds capac 			ally infini	te.								
Queue shown is maximi	um after two	cycles.										
# 95th percentile volume	exceeds cap	oacity, qu	eue may	be longe	r.							
Queue shown is maximi	um after two	cycles.										

Splits and Phases: 1: Granite Street & West Street EB/Franklin Street (Rte 37) & Granite Street (Rte 37) & West Street WB

	4	\searrow	\mathbf{F}	4	6	¥	~	*			
Lane Group	SEL2	SEL	SER	SER2	SWL2	SWL	SWR	SWR2	ø2		
Base Capacity (vph)		1097	722			113	431				
Starvation Cap Reductn		0	0			0	0				
Spillback Cap Reductn		0	0			0	0				
Storage Cap Reductn		0	0			0	0				
Reduced v/c Ratio		0.93	0.81			2.12	0.52				
Intersection Summary											

APPENDIX D

Massachusetts Roundabout Installation Screening Form

	MASSACHUSETTS ROUNDABOUT INSTALLATION SCREENING FORM												
GENERAL INF	ORMATION												
Highway distric	ct: MassDOT District 6				Major street: Route 37 (Granite and Franklin streets)								
MPO/RPA: Bos	ston Region MPO				Minor street: West and Granite streets								
City or Town: Braintree						Existing intersection control: Signalized							
Prepared by: S	Seth Assante				Number of legs at the intersection: Five								
Submitted by: I	Mark Abbott				ADT oi	n major road: Intersection ADT = 4	0,555						
Reviewed by:					ADT oi	n minor road:							
Phone:					Total n	umber of crashes (5-year average):	16.8						
Email:					Speed	limit (major road): 40 mph Route 3	7 north of int.						
Date:					Speed	limit (minor road): 30 mph							
RESOURCES :	DATA AND INFORMATION REQUIRED FOR ASSES	SMENT			1								
1. Traffic count	ts (ADT and turning movements)				6. Aeria	al photographs of location							
2. Vehicle class	sification (trucks and buses)				7. Crash data (3 years)								
3. Pedestrian a	and bicyclist counts				8. Cras	sh diagrams							
4. Plan sheet o	or layout of existing intersection				9. Spe	ed data							
5. Geometric la	ayout of roundabout												
	F DESCRIPTION OF EXISTING PROBLEMS												
I raffic congest	tion during peak periods and high number of crashes.												
STEP 2: PROJ	JECT OBJECTIVES (Check all that apply)			1		[
Question		Prir	nary	Seco	ndary								
Number	Objectives	Yes	No	Yes	No	Comment							
2.1	Safety improvement	√											
2.2	Operational improvement	√											
2.3	Traffic-calming improvement												
2.4	Aesthetics/community enhancements												
2.5	Access management improvement												
	OF ROUNDABOUT AND SPACE REQUIREMENTS	(Check	one)	1	T								
Question Number	What type of roundabout is needed?	Yes	No	Other	Comm	ent	Considerations/Supporting Information						
3.1	Mini-roundabout (Use Exhibit 1 for planning estimate of a mini- roundabount.)												

Question		Prin	nary	Seco	ndary	
Number	Objectives	Yes	No	Yes	No	Comment
2.1	Safety improvement					
2.2	Operational improvement	\checkmark				
2.3	Traffic-calming improvement					
2.4	Aesthetics/community enhancements					
2.5	Access management improvement					
STEP 3: TYP	PE OF ROUNDABOUT AND SPACE REQUIREMENT	S (Check	one)			
Question Number	What type of roundabout is needed?	Yes	No	Other	Comn	nent
3.1	Mini-roundabout (Use Exhibit 1 for planning estimate of a mini- roundabount.)					

	MASSACHU	SETT	SRC	UNDABOUT INSTALLATION SCREEN	
	Single-lane roundabout (Use Exhibit 2 or 3 for planning estimate of a single- lane roundabout.)				Familiar to many motorists, pedestrians, and bicyclists. Has fewer conflict points than multi-lane roundabouts.
	Double-lane roundabout (Use Exhibit 2 or 3 for planning estimate of a double- lane roundabout.)			Very high traffic volumes. Additional analysis required to ensure if multilane roundabout would operate adequately.	fand may be a major factor in rejecting a realiadeat accign nom
3.2	Space requirement Would there be sufficient right-of-way to build the roundabout? (Use Exhibit 4 for planning estimate of space requirements.)			Existing intersection space may not be adequate for multlane roundabout.	Right-of-way and geometric complications can be overcome in certain situations. In addition, consider cost and impact of land acquisition.
Assessment (3.1 to 3.2)	Based on your answers above, is the space requirement met?		\checkmark		
STEP 4: ROU	NDABOUT SCREENING FACTORS (Check all that app	oly)			
SAFETY FAC	TORS				
Question Number	Does the intersection where a roundabout is being considered have safety issues:	Yes	No	Other Comment	Considerations/Supporting Information
4.1	Resulting from multi-leg intersection or unusual geometry?	\checkmark			Too-tight skewed intersections can be problematic for large vehicles (design issues). In addition, too many legs could preclude using a roundabout design.
4.2	Resulting from high-speed crashes?				The purpose of considering a roundabout design could be to control speeds in conjunction with addressing other intersection control needs.
4.3	Causing crashes that are angle-type?				Roundabouts reduce the number of conflict points at which opposing vehicles intersect, hence they can provide possible solutions for angle crashes involving left-turn and crossing movements.
4.4	Associated with crashes resulting in personal injuries?			\checkmark	Collisions at roundabouts tend to be less severe because of low speeds on the entry approach and in the circulating roadway (20 - 25 mph).
Question Number	Does the intersection where a roundabout is being considered have safety issues:	Yes	No	Other Comment	Considerations/Supporting Information
4.5	Associated with sight distance obstructions caused by alignment on existing stop-controlled approach?			Signalized	
4.6	Associated with a change-in-speed environment of the roadway?			Signalized	Generally, they occur at the fringes of an urban environment.

	MASSACHU	SETT	SRC	DUND	ABOUT INSTALLATION SCREEN	
4.7	Associated with visibility from all approaches?				Signalized	Some types of topography and construction complications can be overcome. The Highway Division successfully addressed vertical alignment issues and steep grades of a roundabout proposal on Cape Cod.
4.8	Associated with pedestrian and bicyclist volumes?		√		No bike or pedestrian crashes reported.	This would be an issue with a multi-lane roundabout and would need for further investigation, but it is less of a concern with a single-lane roundabout.
Assessment (4-1 to 4-8)	Based on your answers above, is the project safety improvement objective met—i.e., would a roundabout design address one or more of the project safety issues?			V	Roundabout would reduce angle crashes but may introduce more rear- end crashes. Multilane roundabouts could also increase sideswipe-same- direction crashes.	
OPERATIONA	L FACTORS					
Question Number	Does the intersection where a roundabout is being considered have issues:	Yes	No	Other	Comment	Considerations/Supporting Information
4.9	Resulting from a high percentage of left turns experiencing high delay or a need for left-turn lanes or U-turns?				Majority of traffic is on Granite and Franklin streets.	Roundabouts may accommodate left-turning vehicles more efficiently with lower delays because they may not require storage lanes or separate turning phases.
4.10	Resulting in high delay but failing to meet traffic signal warrants?					
4.11	Resulting from a high proportion of left turns experiencing high delay and limited storage on an off- ramp?		√			A roundabout design can be particularly beneficial at interchanges if the roundabout alternative does not require bridge widening.
Question Number	Is the intersection where a roundabout is being considered located:	Yes	No	Other	Comment	Considerations/Supporting Information
4.12	Where traffic volumes on the minor roads are such that STOP or YIELD signs result in unacceptably high delays for the minor road?		√			
4.13	Where high traffic volumes during peak hours face excessive delays, but relatively low volumes and delays during non-peak hours?					
4.14	Away from a signalized intersection, where queues in general will not spill back into the roundabout?				See adjacent signal on northern leg of Route 37	Queue detection is an example of a possible remedy if queue spillback into the roundabout is occasional. Proper signal timing and coordination may remedy some queue spillbacks.
Question Number	Is the intersection where a roundabout is being considered located:	Yes	No	Other	Comment	Considerations/Supporting Information

	Considerations/Supporting Information
	Roundabouts may accommodate left-turning vehicles more
	efficiently with lower delays because they may not require storage
	lanes or separate turning phases.
	A roundabout design can be particularly beneficial at interchanges if
	the roundabout alternative does not require bridge widening.
	Considerations/Supporting Information
	Queue detection is an example of a possible remedy if queue
of	spillback into the roundabout is occasional. Proper signal timing and
	coordination may remedy some queue spillbacks.
	Considerations/Supporting Information

	MASSACHU	SETT	SRC	DUNDA	ABOUT INSTALLATION SCREEI
4.15	Away from a school drop-off/pickup area, or transit stop, where queues in general will not spill back into the roundabout?				
4.16	Outside of a coordinated arterial signal system or proposed roundabout where it will not impede progression through a corridor?	\checkmark			
4.17	In an area where the percentage of major street traffic volume does not exceed 90% of the total entering traffic volume and the major street traffic volume is not opposed by relatively light traffic on the minor street?	\checkmark			
4.18	Away from a railroad grade crossing, where queuing would not impact the roundabout or grade crossing?				
4.19	Away from a direct emergency access roadway or driveway with preemption, where a roundabout would not impede emergency services?				
Assessment (4.9 to 4.19)	Based on your answers above, is the project location favorable for roundabout installation—i.e., a roundabout design would function well and would not create additional operations problems?		V		Space requirements and possible queue spilling into adjacent traffic signal on Route 37 to the north.

TRAFFIC CALMING FACTORS

Question Number	Does the intersection where a roundabout is being considered have issues:	Yes	No	Other	Comment
4.20	That need to be addressed by traffic-calming measures for pedestrians, bicyclists, motorists, and transit users?				
4.21	Resulting from changes in land-use environments or transition to a new land-use environment?				
Assessment (4.20 to 4.21)	Based on your answers above, is the project traffic- calming improvement objective met—i.e., would a roundabout design address one or more of the project traffic calming issues?			\checkmark	Not an objective of this project.

AESTHETICS AND COMMUNITY ENHANCEMENT FACTOR

ΕN	IING FORM
	Bus bays or pullouts or locating transit stops further downstream of the splitter island may prevent queues from blocking the roundabout.
	If the quality of progression is poor, a roundabout can replace a signalized intersection and improve coordination. Also, with correct signal timing and coordination, roundabouts and traffic signals can exist on the same corridor.
	Depends on how light the traffic is on the minor approach. In addition, if traffic calming is the main focus, then high or low traffic volume should not be the deciding factor.
	Depends on the frequency of railroad trips.
	Depends on the frequency of emergency trips.

Considerations/Supporting InformationGenerally, roundabout designs addressing traffic calming are located on local and residential roads.

Roundabout designs addressing environment or land-use transitions are located in areas where there may be a need to signify to drivers that the character of the road and surrounding land use is changing and, therefore, they need to change their driving behavior.

	MASSACHU	SETT	'S RC	DUND	ABOUT INSTALLATION SCR	EENING FORM
Question Number	Is the proposed roundabout part of:	Yes	No	Other	Comment	Considerations/supporting information
4.22	A community enhancement or aesthetics (gateways) improvement project?		√			Roundabouts proposed for community enhancements and improved aesthetics should demonstrate that they would not introduce traffic problems that do not currently exist.
Assessment (4.22)	Based on your answer above, is the project aesthetics and community enhancement objective met—i.e., would the roundabout design address aesthetics and community enhancement issues?			V	Not an objective of this project.	
ACCESS MAN	AGEMENT FACTORS					
Question Number	Does the corridor in which a roundabout is being considered have issues:	Yes	No	Other	Comment	Considerations/supporting information
4.23	Related to a controlled-access corridor, where U- turns/left turns are desirable at an intersection to access properties on the opposite side of the road?					Corridors that are hampered with numerous driveways, especially those to businesses, can benefit from roundabouts. Roundabouts in conjunction with raised medians facilitate the use of U-turns and left
4.24	Related to many access/egress points where left turns experience unacceptable delay turning into and out of driveways and consolidating and controlling access points (installing a raised median) are desirable objectives?		V			turns at intersections and allow right-in-right-out movements at driveways.
Assessment (4.23 to 4.24)			V		Not an objective of this project.	
STEP 5: SCRE	EENING EVALUATION (Please circle one decision)	•	•	<u> </u>	•	
Decision						Comments
Candidate	Advance a roundabout design for further analysi didate 2. One or more of the project objectives		design	if it mee	ts both of these criteria:	
Conditional	nditional Advance a roundabout design for further analys		design	under th	ese conditions (specify):	
Not recommended A roundabout is not recommeded for further con 1. Space requirements 2. None of the project objectives		nsideration if it fails to meet either of these criteria:				High traffic volume multilane roundabout, inadequate space requirements make the location inappropriate for a roundabout.
	гs					
Please attach a	all of the data and information applied to this roundabou	t asses	sment	tool to s	upport your decision.	

APPENDIX E

SIDRA Analysis

INPUT VOLUMES

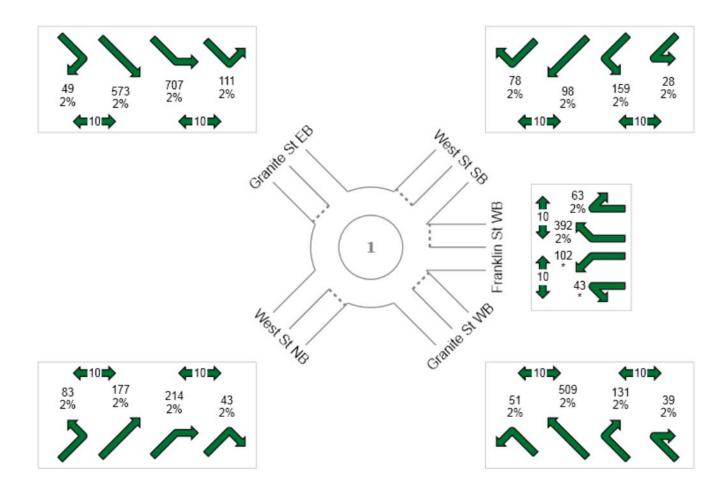
Vehicles and pedestrians per 60 minutes

Site: PM Peak Hour

AM PEAK Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles


Total Intersection Volumes (veh)

All Movement Classes: 3650

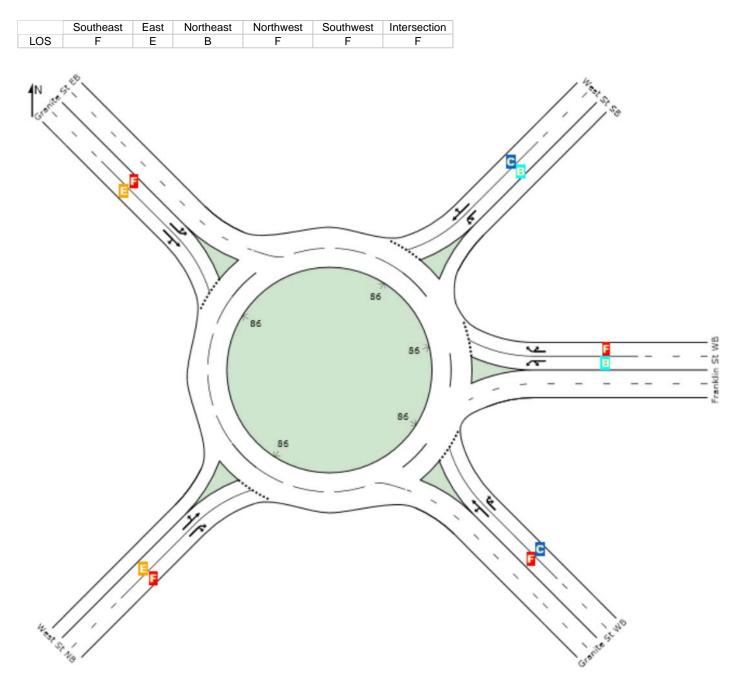
Light Vehicles (LV): 3580

Heavy Vehicles (HV): 70

Pedestrians: 100

* Class does not run in this movement.

Copyright O 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com


SIDRA INTERSECTION 6

LEVEL OF SERVICE

🕅 Site: PM Peak Hour

AM PEAK Roundabout

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

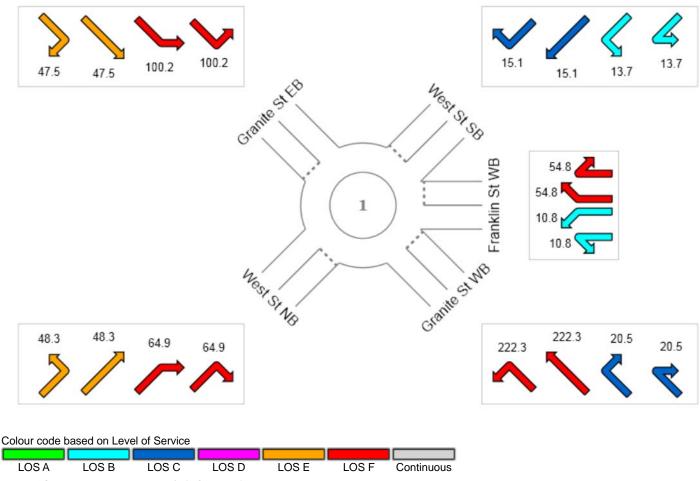
Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: PM Peak Hour

AM PEAK Roundabout

All Movement Classes

	Southeast	East	Northeast	Northwest	Southwest	Intersection
Delay (Control)	175.3	44.2	14.4	77.4	56.6	82.3
LOS	F	E	В	F	F	F

Level of Service Method: Delay & v/c (HCM 2010)

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Processed: Wednesday, April 09, 2014 11:57:57 AM Copyright SIDRA INTERSECTION 6.0.20.4660 www.sidra Project: C:\Users\setha\Documents\Route37Roundabout.sip6 8001137, CTPS, PLUS / 1PC

Copyright $\textcircled{\sc opt}$ 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

INPUT VOLUMES

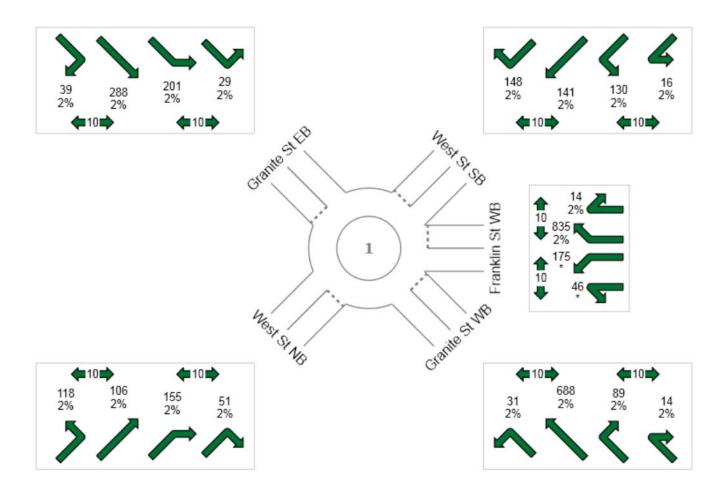
Vehicles and pedestrians per 60 minutes

Site: AM Peak Hour

AM PEAK Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles


Total Intersection Volumes (veh)

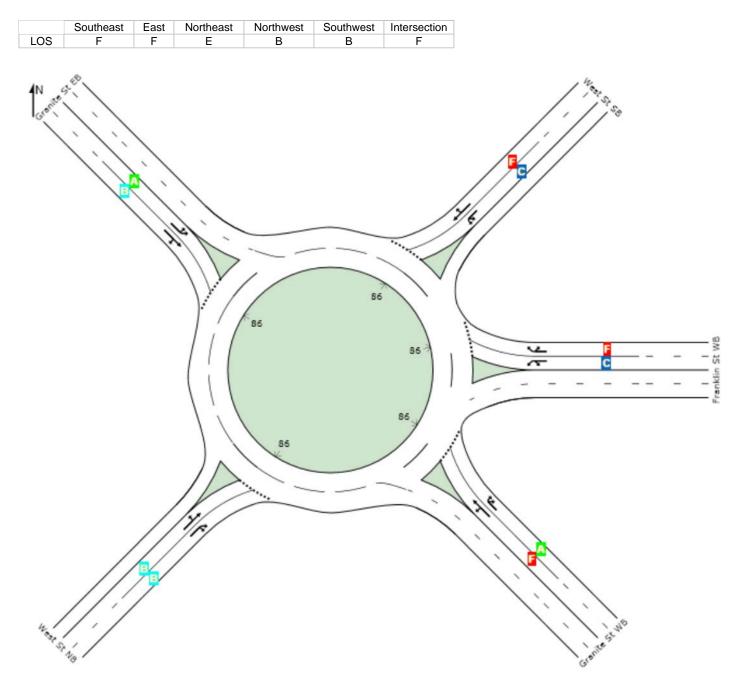
All Movement Classes: 3314

Light Vehicles (LV): 3252

Heavy Vehicles (HV): 62

Pedestrians: 100

* Class does not run in this movement.


Created: Wednesday, April 09, 2014 12:08:51 PM SIDRA INTERSECTION 6.0.20.4660 Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: C:\Users\setha\Documents\Route37Roundabout.sip6 8001137, CTPS, PLUS / 1PC SIDRA INTERSECTION 6

LEVEL OF SERVICE

🕅 Site: AM Peak Hour

AM PEAK Roundabout

All Movement Classes

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

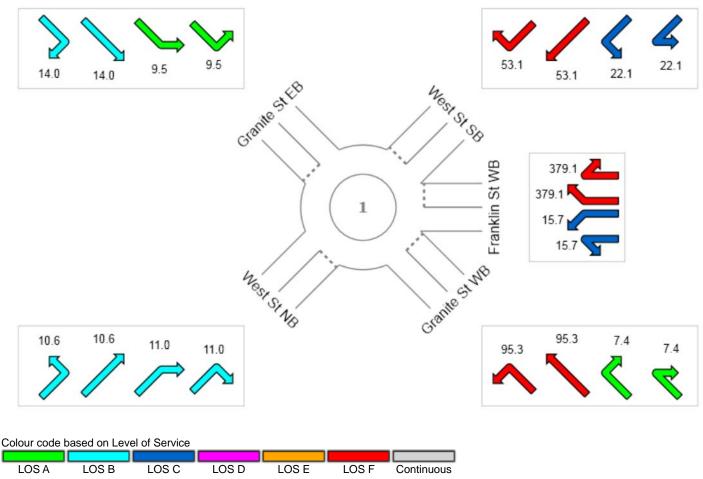
Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: AM Peak Hour

AM PEAK Roundabout

All Movement Classes

	Southeast	East	Northeast	Northwest	Southwest	Intersection
Delay (Control)	84.2	304.1	42.7	12.1	10.8	128.1
LOS	F	F	E	В	В	F

Level of Service Method: Delay & v/c (HCM 2010)

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Processed: Wednesday, April 09, 2014 11:44:49 AM Copyright SIDRA INTERSECTION 6.0.20.4660 www.sidra Project: C:\Users\setha\Documents\Route37Roundabout.sip6 8001137, CTPS, PLUS / 1PC

Copyright $\textcircled{\sc opt}$ 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

